Skip to content

Commit 2a245bb

Browse files
committed
docs: perldl prompt now "pdl>"
1 parent 131ab21 commit 2a245bb

File tree

4 files changed

+119
-123
lines changed

4 files changed

+119
-123
lines changed

lib/PDL/Stats/Basic.pd

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -319,9 +319,9 @@ Usage:
319319

320320
# 5 obs x 3 var, 2 such data tables
321321

322-
perldl> $a = random 5, 3, 2
322+
pdl> $a = random 5, 3, 2
323323

324-
perldl> p $cov = $a->cov_table
324+
pdl> p $cov = $a->cov_table
325325
[
326326
[
327327
[ 8.9636438 -1.8624472 -1.2416588]
@@ -335,15 +335,15 @@ Usage:
335335
]
336336
]
337337
# diagonal elements of the cov table are the variances
338-
perldl> p $a->var
338+
pdl> p $a->var
339339
[
340340
[ 8.9636438 14.341514 9.8690655]
341341
[ 10.32644 15.051779 5.4465141]
342342
]
343343

344344
for the same cov matrix table using B<cov>,
345345

346-
perldl> p $a->dummy(2)->cov($a->dummy(1))
346+
pdl> p $a->dummy(2)->cov($a->dummy(1))
347347
',
348348

349349
);
@@ -380,15 +380,15 @@ Pearson correlation coefficient. r = cov(X,Y) / (stdv(X) * stdv(Y)).
380380

381381
Usage:
382382

383-
perldl> $a = random 5, 3
384-
perldl> $b = sequence 5,3
385-
perldl> p $a->corr($b)
383+
pdl> $a = random 5, 3
384+
pdl> $b = sequence 5,3
385+
pdl> p $a->corr($b)
386386

387387
[0.20934208 0.30949881 0.26713007]
388388

389389
for square corr table
390390

391-
perldl> p $a->corr($a->dummy(1))
391+
pdl> p $a->corr($a->dummy(1))
392392

393393
[
394394
[ 1 -0.41995259 -0.029301192]
@@ -454,9 +454,9 @@ Usage:
454454

455455
# 5 obs x 3 var, 2 such data tables
456456

457-
perldl> $a = random 5, 3, 2
457+
pdl> $a = random 5, 3, 2
458458

459-
perldl> p $a->corr_table
459+
pdl> p $a->corr_table
460460
[
461461
[
462462
[ 1 -0.69835951 -0.18549048]
@@ -472,7 +472,7 @@ Usage:
472472

473473
for the same result using B<corr>,
474474

475-
perldl> p $a->dummy(2)->corr($a->dummy(1))
475+
pdl> p $a->dummy(2)->corr($a->dummy(1))
476476

477477
This is also how to use B<t_corr> and B<n_pair> with such a table.
478478
',

lib/PDL/Stats/GLM.pd

Lines changed: 48 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -99,13 +99,13 @@ bad.
9999

100100
=for usage
101101

102-
perldl> p $data
102+
pdl> p $data
103103
[
104104
[ 5 BAD 2 BAD]
105105
[ 7 3 7 BAD]
106106
]
107107

108-
perldl> p $data->fill_m
108+
pdl> p $data->fill_m
109109
[
110110
[ 5 3.5 2 3.5]
111111
[ 7 3 7 5.66667]
@@ -148,13 +148,13 @@ observations from the same variable.
148148

149149
=for usage
150150

151-
perldl> p $data
151+
pdl> p $data
152152
[
153153
[ 5 BAD 2 BAD]
154154
[ 7 3 7 BAD]
155155
]
156156

157-
perldl> p $data->fill_rand
157+
pdl> p $data->fill_rand
158158

159159
[
160160
[5 2 2 5]
@@ -383,20 +383,16 @@ Usage:
383383
# DV, 2 person's ratings for top-10 box office movies
384384
# ascending sorted by box office numbers
385385

386-
perldl> p $y = qsort ceil( random(10, 2)*5 )
387-
[
388-
[1 1 2 4 4 4 4 5 5 5]
389-
[1 2 2 2 3 3 3 3 5 5]
390-
]
386+
pdl> p $y = pdl '1 1 2 4 4 4 4 5 5 5; 1 2 2 2 3 3 3 3 5 5'
391387

392388
# model with 2 IVs, a linear and a quadratic trend component
393389

394-
perldl> $x = cat sequence(10), sequence(10)**2
390+
pdl> $x = cat sequence(10), sequence(10)**2
395391

396392
# suppose our novice modeler thinks this creates 3 different models
397393
# for predicting movie ratings
398394

399-
perldl> p $x = cat $x, $x * 2, $x * 3
395+
pdl> p $x = cat $x, $x * 2, $x * 3
400396
[
401397
[
402398
[ 0 1 2 3 4 5 6 7 8 9]
@@ -412,14 +408,14 @@ Usage:
412408
]
413409
]
414410

415-
perldl> p $x->info
411+
pdl> p $x->info
416412
PDL: Double D [10,2,3]
417413

418414
# insert a dummy dim between IV and the dim (model) to be broadcasted
419415

420-
perldl> %m = $y->ols_t( $x->dummy(2) )
416+
pdl> %m = $y->ols_t( $x->dummy(2) )
421417

422-
perldl> p "$_\t$m{$_}\n" for sort keys %m
418+
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
423419

424420
# 2 persons' ratings, each fitted with 3 "different" models
425421

@@ -613,20 +609,20 @@ Usage:
613609
# suppose these are two persons' ratings for top 10 box office movies
614610
# ascending sorted by box office
615611

616-
perldl> p $y = qsort ceil(random(10, 2) * 5)
612+
pdl> p $y = qsort ceil(random(10, 2) * 5)
617613
[
618614
[1 1 2 2 2 3 4 4 4 4]
619615
[1 2 2 3 3 3 4 4 5 5]
620616
]
621617

622618
# first IV is a simple linear trend
623619

624-
perldl> p $x1 = sequence 10
620+
pdl> p $x1 = sequence 10
625621
[0 1 2 3 4 5 6 7 8 9]
626622

627623
# the modeler wonders if adding a quadratic trend improves the fit
628624

629-
perldl> p $x2 = sequence(10) ** 2
625+
pdl> p $x2 = sequence(10) ** 2
630626
[0 1 4 9 16 25 36 49 64 81]
631627

632628
# two difference models are given in two pdls
@@ -635,9 +631,9 @@ Usage:
635631
# the 2nd model includes linear and quadratic trends
636632
# when necessary use dummy dim so both models have the same ndims
637633

638-
perldl> %c = $y->r2_change( $x1->dummy(1), cat($x1, $x2) )
634+
pdl> %c = $y->r2_change( $x1->dummy(1), cat($x1, $x2) )
639635

640-
perldl> p "$_\t$c{$_}\n" for sort keys %c
636+
pdl> p "$_\t$c{$_}\n" for sort keys %c
641637
# person 1 person 2
642638
F_change [0.72164948 0.071283096]
643639
# df same for both persons
@@ -711,21 +707,21 @@ Usage:
711707

712708
# suppose this is ratings for 12 apples
713709

714-
perldl> p $y = qsort ceil( random(12)*5 )
710+
pdl> p $y = qsort ceil( random(12)*5 )
715711
[1 1 2 2 2 3 3 4 4 4 5 5]
716712

717713
# IV for types of apple
718714

719-
perldl> p $a = sequence(12) % 3 + 1
715+
pdl> p $a = sequence(12) % 3 + 1
720716
[1 2 3 1 2 3 1 2 3 1 2 3]
721717

722718
# IV for whether we baked the apple
723719

724-
perldl> @b = qw( y y y y y y n n n n n n )
720+
pdl> @b = qw( y y y y y y n n n n n n )
725721

726-
perldl> %m = $y->anova( $a, \@b, { IVNM=>['apple', 'bake'] } )
722+
pdl> %m = $y->anova( $a, \@b, { IVNM=>['apple', 'bake'] } )
727723

728-
perldl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
724+
pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
729725
F 2.46666666666667
730726
F_df [5 6]
731727
F_p 0.151168719948632
@@ -1288,8 +1284,8 @@ Supports BAD value (missing or 'BAD' values result in the corresponding pdl elem
12881284

12891285
=for usage
12901286

1291-
perldl> @a = qw(a a a b b b c c c)
1292-
perldl> p $a = dummy_code(\@a)
1287+
pdl> @a = qw(a a a b b b c c c)
1288+
pdl> p $a = dummy_code(\@a)
12931289
[
12941290
[1 1 1 0 0 0 0 0 0]
12951291
[0 0 0 1 1 1 0 0 0]
@@ -1358,8 +1354,8 @@ Supports BAD value (missing or 'BAD' values result in the corresponding pdl elem
13581354

13591355
=for usage
13601356

1361-
perldl> @a = qw( a a b b b c c )
1362-
perldl> p $a = effect_code_w(\@a)
1357+
pdl> @a = qw( a a b b b c c )
1358+
pdl> p $a = effect_code_w(\@a)
13631359
[
13641360
[ 1 1 0 0 0 -1 -1]
13651361
[ 0 0 1 1 1 -1.5 -1.5]
@@ -1389,20 +1385,20 @@ pdl elements being marked as BAD).
13891385

13901386
=for usage
13911387

1392-
perldl> $a = sequence(6) > 2
1393-
perldl> p $a = $a->effect_code
1388+
pdl> $a = sequence(6) > 2
1389+
pdl> p $a = $a->effect_code
13941390
[
13951391
[ 1 1 1 -1 -1 -1]
13961392
]
13971393

1398-
perldl> $b = pdl( qw( 0 1 2 0 1 2 ) )
1399-
perldl> p $b = $b->effect_code
1394+
pdl> $b = pdl( qw( 0 1 2 0 1 2 ) )
1395+
pdl> p $b = $b->effect_code
14001396
[
14011397
[ 1 0 -1 1 0 -1]
14021398
[ 0 1 -1 0 1 -1]
14031399
]
14041400

1405-
perldl> p $ab = interaction_code( $a, $b )
1401+
pdl> p $ab = interaction_code( $a, $b )
14061402
[
14071403
[ 1 0 -1 -1 -0 1]
14081404
[ 0 1 -1 -0 -1 1]
@@ -1450,20 +1446,20 @@ Usage:
14501446
# suppose this is a person's ratings for top 10 box office movies
14511447
# ascending sorted by box office
14521448

1453-
perldl> p $y = qsort ceil( random(10) * 5 )
1449+
pdl> p $y = qsort ceil( random(10) * 5 )
14541450
[1 1 2 2 2 2 4 4 5 5]
14551451

14561452
# construct IV with linear and quadratic component
14571453

1458-
perldl> p $x = cat sequence(10), sequence(10)**2
1454+
pdl> p $x = cat sequence(10), sequence(10)**2
14591455
[
14601456
[ 0 1 2 3 4 5 6 7 8 9]
14611457
[ 0 1 4 9 16 25 36 49 64 81]
14621458
]
14631459

1464-
perldl> %m = $y->ols( $x )
1460+
pdl> %m = $y->ols( $x )
14651461

1466-
perldl> p "$_\t$m{$_}\n" for sort keys %m
1462+
pdl> p "$_\t$m{$_}\n" for sort keys %m
14671463

14681464
F 40.4225352112676
14691465
F_df [2 7]
@@ -1656,30 +1652,30 @@ Usage:
16561652

16571653
# suppose this is whether a person had rented 10 movies
16581654

1659-
perldl> p $y = ushort( random(10)*2 )
1655+
pdl> p $y = ushort( random(10)*2 )
16601656
[0 0 0 1 1 0 0 1 1 1]
16611657

16621658
# IV 1 is box office ranking
16631659

1664-
perldl> p $x1 = sequence(10)
1660+
pdl> p $x1 = sequence(10)
16651661
[0 1 2 3 4 5 6 7 8 9]
16661662

16671663
# IV 2 is whether the movie is action- or chick-flick
16681664

1669-
perldl> p $x2 = sequence(10) % 2
1665+
pdl> p $x2 = sequence(10) % 2
16701666
[0 1 0 1 0 1 0 1 0 1]
16711667

16721668
# concatenate the IVs together
16731669

1674-
perldl> p $x = cat $x1, $x2
1670+
pdl> p $x = cat $x1, $x2
16751671
[
16761672
[0 1 2 3 4 5 6 7 8 9]
16771673
[0 1 0 1 0 1 0 1 0 1]
16781674
]
16791675

1680-
perldl> %m = $y->logistic( $x )
1676+
pdl> %m = $y->logistic( $x )
16811677

1682-
perldl> p "$_\t$m{$_}\n" for sort keys %m
1678+
pdl> p "$_\t$m{$_}\n" for sort keys %m
16831679

16841680
D0 13.8629436111989
16851681
Dm 9.8627829791575
@@ -1694,8 +1690,8 @@ Usage:
16941690
y_pred [0.10715577 0.23683909 ... 0.76316091 0.89284423]
16951691

16961692
# to get the covariance out, supply a true value for the COV option:
1697-
perldl> %m = $y->logistic( $x, {COV=>1} )
1698-
perldl> p $m{cov};
1693+
pdl> %m = $y->logistic( $x, {COV=>1} )
1694+
pdl> p $m{cov};
16991695

17001696
=cut
17011697

@@ -1909,18 +1905,18 @@ Default options (case insensitive):
19091905
Usage:
19101906

19111907
# let's see if we replicated the Osgood et al. (1957) study
1912-
perldl> ($data, $idv, $ido) = rtable 'osgood_exp.csv', {v=>0}
1908+
pdl> ($data, $idv, $ido) = rtable 'osgood_exp.csv', {v=>0}
19131909

19141910
# select a subset of var to do pca
1915-
perldl> $ind = which_id $idv, [qw( ACTIVE BASS BRIGHT CALM FAST GOOD HAPPY HARD LARGE HEAVY )]
1916-
perldl> $data = $data( ,$ind)->sever
1917-
perldl> @$idv = @$idv[list $ind]
1911+
pdl> $ind = which_id $idv, [qw( ACTIVE BASS BRIGHT CALM FAST GOOD HAPPY HARD LARGE HEAVY )]
1912+
pdl> $data = $data( ,$ind)->sever
1913+
pdl> @$idv = @$idv[list $ind]
19181914

1919-
perldl> %m = $data->pca
1915+
pdl> %m = $data->pca
19201916

1921-
perldl> ($iv, $ic) = $m{loadings}->pca_sorti()
1917+
pdl> ($iv, $ic) = $m{loadings}->pca_sorti()
19221918

1923-
perldl> p "$idv->[$_]\t" . $m{loadings}->($_,$ic)->flat . "\n" for (list $iv)
1919+
pdl> p "$idv->[$_]\t" . $m{loadings}->($_,$ic)->flat . "\n" for (list $iv)
19241920

19251921
# COMP0 COMP1 COMP2 COMP3
19261922
HAPPY [0.860191 0.364911 0.174372 -0.10484]

0 commit comments

Comments
 (0)