Skip to content

Commit ee15fcf

Browse files
committed
Add discrete noise distributions
Adds Poisson, binomial, and negative binomial distributions to the list of noise distributions.
1 parent 6e7ddc8 commit ee15fcf

File tree

1 file changed

+56
-7
lines changed

1 file changed

+56
-7
lines changed

doc/v2/documentation_data_format.rst

Lines changed: 56 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -521,6 +521,8 @@ Detailed field description
521521
- ``measurement`` [NUMERIC, REQUIRED]
522522

523523
The measured value in the same units/scale as the model output.
524+
If the corresponding ``noiseDistribution`` specifies a discrete distribution,
525+
this value must be integral.
524526

525527
- ``time`` [NUMERIC OR ``inf``, REQUIRED]
526528

@@ -746,6 +748,21 @@ Detailed field description
746748
Noise distributions
747749
~~~~~~~~~~~~~~~~~~~
748750

751+
The supported Continuous and discrete probability distributions to model
752+
measurement noise as listed below.
753+
754+
The distributions below are for a single data point.
755+
For a collection :math:`D=\{m_i\}_i` of data points and corresponding
756+
simulations :math:`Y=\{y_i\}_i`
757+
and noise parameters :math:`\Sigma=\{\sigma_i\}_i`,
758+
the current specification assumes independence, i.e. the full distribution is
759+
760+
.. math::
761+
\pi(D|Y,\Sigma) = \prod_i\pi(m_i|y_i,\sigma_i)
762+
763+
Continuous distributions
764+
++++++++++++++++++++++++
765+
749766
Denote by :math:`m` the measured value,
750767
:math:`y:=\text{observableFormula}` the simulated value
751768
(the location parameter of the noise distribution),
@@ -780,14 +797,46 @@ Then we have the following effective noise distributions:
780797
- .. math::
781798
\pi(m|y,\sigma) = \frac{1}{2\sigma m}\exp\left(-\frac{|\log m - \log y|}{\sigma}\right)
782799

783-
The distributions above are for a single data point.
784-
For a collection :math:`D=\{m_i\}_i` of data points and corresponding
785-
simulations :math:`Y=\{y_i\}_i`
786-
and noise parameters :math:`\Sigma=\{\sigma_i\}_i`,
787-
the current specification assumes independence, i.e. the full distribution is
800+
Discrete distributions
801+
++++++++++++++++++++++
788802

789-
.. math::
790-
\pi(D|Y,\Sigma) = \prod_i\pi(m_i|y_i,\sigma_i)
803+
Denote by :math:`m` the ``measurement`` in the measurement table,
804+
then we have the following effective noise distributions:
805+
806+
.. list-table::
807+
:header-rows: 1
808+
:widths: 10 10 80
809+
810+
* - Type
811+
- ``noiseDistribution``
812+
- Probability density function (PDF)
813+
* - Poisson distribution
814+
- ``poisson``
815+
- .. math::
816+
\pi(m|\lambda) = \frac{\lambda^m\exp(-\lambda)}{m!}
817+
818+
where the rate :math:`\lambda` is given via ``observableFormula``.
819+
``noiseFormula`` must be empty in this case.
820+
The measurement :math:`m` is the number of observed events
821+
and must be a non-negative integer.
822+
* - Binomial distribution
823+
- ``binomial``
824+
- .. math::
825+
\pi(m|n,p) = \binom{n}{m}p^m(1-p)^{n-m}
826+
827+
where :math:`n` is the number of trials given via ``observableFormula``
828+
and :math:`p` the probability of success given via ``noiseFormula``.
829+
The measurement :math:`m` is the number of observed successes
830+
and must be an integer between 0 and :math:`n`.
831+
* - Negative binomial distribution
832+
- ``negative-binomial``
833+
- .. math::
834+
\pi(m|r,p) = \binom{m+r-1}{m}p^r(1-p)^m
835+
836+
where :math:`r` is the number of successes given via ``observableFormula``
837+
and :math:`p` the probability of success given via ``noiseFormula``.
838+
The measurement :math:`m` is the number of observed failures
839+
and must be a non-negative integer.
791840

792841
.. _v2_parameter_table:
793842

0 commit comments

Comments
 (0)