@@ -521,6 +521,8 @@ Detailed field description
521521- ``measurement `` [NUMERIC, REQUIRED]
522522
523523 The measured value in the same units/scale as the model output.
524+ If the corresponding ``noiseDistribution `` specifies a discrete distribution,
525+ this value must be integral.
524526
525527- ``time `` [NUMERIC OR ``inf ``, REQUIRED]
526528
@@ -746,6 +748,21 @@ Detailed field description
746748Noise distributions
747749~~~~~~~~~~~~~~~~~~~
748750
751+ The supported Continuous and discrete probability distributions to model
752+ measurement noise as listed below.
753+
754+ The distributions below are for a single data point.
755+ For a collection :math: `D=\{ m_i\} _i` of data points and corresponding
756+ simulations :math: `Y=\{ y_i\} _i`
757+ and noise parameters :math: `\Sigma =\{\sigma _i\} _i`,
758+ the current specification assumes independence, i.e. the full distribution is
759+
760+ .. math ::
761+ \pi (D|Y,\Sigma ) = \prod _i\pi (m_i|y_i,\sigma _i)
762+
763+ Continuous distributions
764+ ++++++++++++++++++++++++
765+
749766Denote by :math: `m` the measured value,
750767:math: `y:=\text {observableFormula}` the simulated value
751768(the location parameter of the noise distribution),
@@ -780,14 +797,46 @@ Then we have the following effective noise distributions:
780797 - .. math::
781798 \pi(m|y,\sigma) = \frac{1}{2\sigma m}\exp\left(-\frac{|\log m - \log y|}{\sigma}\right)
782799
783- The distributions above are for a single data point.
784- For a collection :math: `D=\{ m_i\} _i` of data points and corresponding
785- simulations :math: `Y=\{ y_i\} _i`
786- and noise parameters :math: `\Sigma =\{\sigma _i\} _i`,
787- the current specification assumes independence, i.e. the full distribution is
800+ Discrete distributions
801+ ++++++++++++++++++++++
788802
789- .. math ::
790- \pi (D|Y,\Sigma ) = \prod _i\pi (m_i|y_i,\sigma _i)
803+ Denote by :math: `m` the ``measurement `` in the measurement table,
804+ then we have the following effective noise distributions:
805+
806+ .. list-table ::
807+ :header-rows: 1
808+ :widths: 10 10 80
809+
810+ * - Type
811+ - ``noiseDistribution ``
812+ - Probability density function (PDF)
813+ * - Poisson distribution
814+ - ``poisson ``
815+ - .. math::
816+ \pi(m|\lambda) = \frac{\lambda^m\exp(-\lambda)}{m!}
817+
818+ where the rate :math:`\lambda` is given via ``observableFormula``.
819+ ``noiseFormula`` must be empty in this case.
820+ The measurement :math:`m` is the number of observed events
821+ and must be a non-negative integer.
822+ * - Binomial distribution
823+ - ``binomial ``
824+ - .. math::
825+ \pi(m|n,p) = \binom{n}{m}p^m(1-p)^{n-m}
826+
827+ where :math:`n` is the number of trials given via ``observableFormula``
828+ and :math:`p` the probability of success given via ``noiseFormula``.
829+ The measurement :math:`m` is the number of observed successes
830+ and must be an integer between 0 and :math:`n`.
831+ * - Negative binomial distribution
832+ - ``negative-binomial ``
833+ - .. math::
834+ \pi(m|r,p) = \binom{m+r-1}{m}p^r(1-p)^m
835+
836+ where :math:`r` is the number of successes given via ``observableFormula``
837+ and :math:`p` the probability of success given via ``noiseFormula``.
838+ The measurement :math:`m` is the number of observed failures
839+ and must be a non-negative integer.
791840
792841.. _v2_parameter_table :
793842
0 commit comments