Skip to content
This repository was archived by the owner on Aug 2, 2022. It is now read-only.

Commit 3235966

Browse files
author
Carlos Carreiras
committed
Changed docstring style to napoleon-numpy.
1 parent deba9a1 commit 3235966

File tree

16 files changed

+2478
-1559
lines changed

16 files changed

+2478
-1559
lines changed

biosppy/biometrics.py

Lines changed: 613 additions & 350 deletions
Large diffs are not rendered by default.

biosppy/clustering.py

Lines changed: 285 additions & 218 deletions
Large diffs are not rendered by default.

biosppy/metrics.py

Lines changed: 86 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -27,12 +27,17 @@ def pcosine(u, v):
2727
2828
where :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.
2929
30-
Args:
31-
u (array): Input array.
32-
v (array): Input array.
33-
34-
Returns:
35-
cosine (float): Cosine distance between `u` and `v`.
30+
Parameters
31+
----------
32+
u : array
33+
Input array.
34+
v : array
35+
Input array.
36+
37+
Returns
38+
-------
39+
cosine : float
40+
Cosine distance between `u` and `v`.
3641
3742
"""
3843

@@ -50,26 +55,31 @@ def pdist(X, metric='euclidean', p=2, w=None, V=None, VI=None):
5055
5156
Wraps scipy.spatial.distance.pdist.
5257
53-
Args:
54-
X (array): An m by n array of m original observations in an
55-
n-dimensional space.
56-
metric (str, function, optional): The distance metric to use;
57-
the distance can be 'braycurtis', 'canberra', 'chebyshev',
58-
'cityblock', 'correlation', 'cosine', 'dice', 'euclidean',
59-
'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching',
60-
'minkowski', 'pcosine', 'rogerstanimoto', 'russellrao',
61-
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
62-
p (float, optional): The p-norm to apply (for Minkowski, weighted and
63-
unweighted).
64-
w (array, optional): The weight vector (for weighted Minkowski).
65-
V (array, optional): The variance vector (for standardized Euclidean).
66-
VI (array, optional): The inverse of the covariance matrix
67-
(for Mahalanobis).
68-
69-
Returns:
70-
Y (array): Returns a condensed distance matrix Y. For each :math:`i`
71-
and :math:`j` (where :math:`i<j<n`), the metric
72-
``dist(u=X[i], v=X[j])`` is computed and stored in entry ``ij``.
58+
Parameters
59+
----------
60+
X : array
61+
An m by n array of m original observations in an n-dimensional space.
62+
metric : str, function, optional
63+
The distance metric to use; the distance can be 'braycurtis',
64+
'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice',
65+
'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
66+
'matching', 'minkowski', 'pcosine', 'rogerstanimoto', 'russellrao',
67+
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
68+
p : float, optional
69+
The p-norm to apply (for Minkowski, weighted and unweighted).
70+
w : array, optional
71+
The weight vector (for weighted Minkowski).
72+
V : array, optional
73+
The variance vector (for standardized Euclidean).
74+
VI : array, optional
75+
The inverse of the covariance matrix (for Mahalanobis).
76+
77+
Returns
78+
-------
79+
Y : array
80+
Returns a condensed distance matrix Y. For each :math:`i` and
81+
:math:`j` (where :math:`i<j<n`), the metric ``dist(u=X[i], v=X[j])``
82+
is computed and stored in entry ``ij``.
7383
7484
"""
7585

@@ -85,29 +95,35 @@ def cdist(XA, XB, metric='euclidean', p=2, V=None, VI=None, w=None):
8595
8696
Wraps scipy.spatial.distance.cdist.
8797
88-
Args:
89-
XA (array): An :math:`m_A` by :math:`n` array of :math:`m_A` original
90-
observations in an :math:`n`-dimensional space.
91-
XB (array): An :math:`m_B` by :math:`n` array of :math:`m_B` original
92-
observations in an :math:`n`-dimensional space.
93-
metric (str, function, optional): The distance metric to use;
94-
the distance can be 'braycurtis', 'canberra', 'chebyshev',
95-
'cityblock', 'correlation', 'cosine', 'dice', 'euclidean',
96-
'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching',
97-
'minkowski', 'pcosine', 'rogerstanimoto', 'russellrao',
98-
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
99-
p (float, optional): The p-norm to apply (for Minkowski, weighted and
100-
unweighted).
101-
w (array, optional): The weight vector (for weighted Minkowski).
102-
V (array, optional): The variance vector (for standardized Euclidean).
103-
VI (array, optional): The inverse of the covariance matrix
104-
(for Mahalanobis).
105-
106-
Returns:
107-
Y (array): A :math:`m_A` by :math:`m_B` distance matrix is returned.
108-
For each :math:`i` and :math:`j`, the metric
109-
``dist(u=XA[i], v=XB[j])`` is computed and stored in
110-
the :math:`ij` th entry.
98+
Parameters
99+
----------
100+
XA : array
101+
An :math:`m_A` by :math:`n` array of :math:`m_A` original observations
102+
in an :math:`n`-dimensional space.
103+
XB : array
104+
An :math:`m_B` by :math:`n` array of :math:`m_B` original observations
105+
in an :math:`n`-dimensional space.
106+
metric : str, function, optional
107+
The distance metric to use; the distance can be 'braycurtis',
108+
'canberra', 'chebyshev', 'cityblock', 'correlation', 'cosine', 'dice',
109+
'euclidean', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis',
110+
'matching', 'minkowski', 'pcosine', 'rogerstanimoto', 'russellrao',
111+
'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
112+
p : float, optional
113+
The p-norm to apply (for Minkowski, weighted and unweighted).
114+
w : array, optional
115+
The weight vector (for weighted Minkowski).
116+
V : array, optional
117+
The variance vector (for standardized Euclidean).
118+
VI : array, optional
119+
The inverse of the covariance matrix (for Mahalanobis).
120+
121+
Returns
122+
-------
123+
Y : array
124+
An :math:`m_A` by :math:`m_B` distance matrix is returned. For each
125+
:math:`i` and :math:`j`, the metric ``dist(u=XA[i], v=XB[j])``
126+
is computed and stored in the :math:`ij` th entry.
111127
112128
"""
113129

@@ -124,21 +140,27 @@ def squareform(X, force="no", checks=True):
124140
125141
Wraps scipy.spatial.distance.squareform.
126142
127-
Args:
128-
X (array): Either a condensed or redundant distance matrix.
129-
force (str, optional): As with MATLAB(TM), if force is equal to
130-
'tovector' or 'tomatrix', the input will be treated as a distance
131-
matrix or distance vector respectively.
132-
checks (bool, optional): If `checks` is set to False, no checks will be
133-
made for matrix symmetry nor zero diagonals. This is useful if it
134-
is known that ``X - X.T1`` is small and ``diag(X)`` is close to
135-
zero. These values are ignored any way so they do not disrupt the
136-
squareform transformation.
137-
138-
Returns:
139-
Y (array): If a condensed distance matrix is passed, a redundant one is
140-
returned, or if a redundant one is passed, a condensed distance
141-
matrix is returned.
143+
Parameters
144+
----------
145+
X : array
146+
Either a condensed or redundant distance matrix.
147+
force : str, optional
148+
As with MATLAB(TM), if force is equal to 'tovector' or 'tomatrix', the
149+
input will be treated as a distance matrix or distance vector
150+
respectively.
151+
checks : bool, optional
152+
If `checks` is set to False, no checks will be made for matrix
153+
symmetry nor zero diagonals. This is useful if it is known that
154+
``X - X.T1`` is small and ``diag(X)`` is close to zero. These values
155+
are ignored any way so they do not disrupt the squareform
156+
transformation.
157+
158+
Returns
159+
-------
160+
Y : array
161+
If a condensed distance matrix is passed, a redundant one is returned,
162+
or if a redundant one is passed, a condensed distance matrix is
163+
returned.
142164
143165
"""
144166

0 commit comments

Comments
 (0)