@@ -581,9 +581,14 @@ def train_epoch(self):
581
581
epoch_previous = self .epoch
582
582
self .epoch = effective_epochs
583
583
g .write_unique (
584
- '\n Epoch {:.2f} finished training ({:.2f} epochs passed)' .format (
585
- 1.0 * self .epoch , self .epoch - epoch_previous )
586
- + ' in {:.2f} seconds.\n ' .format (t2 - t_start ))
584
+ # TODO(KGF): "a total of X epochs within this session" ?
585
+ '\n Finished training epoch {:.2f} ' .format (self .epoch )
586
+ # TODO(KGF): "precisely/exactly X epochs just passed"?
587
+ + 'during this session ({:.2f} epochs passed)' .format (
588
+ self .epoch - epoch_previous )
589
+ # '\nEpoch {:.2f} finished training ({:.2f} epochs passed)'.format(
590
+ # 1.0 * self.epoch, self.epoch - epoch_previous)
591
+ + ' in {:.2f} seconds\n ' .format (t2 - t_start ))
587
592
return (step , ave_loss , curr_loss , self .num_so_far , effective_epochs )
588
593
589
594
def estimate_remaining_time (self , time_so_far , work_so_far , work_total ):
@@ -884,7 +889,10 @@ def mpi_train(conf, shot_list_train, shot_list_validate, loader,
884
889
(step , ave_loss , curr_loss , num_so_far ,
885
890
effective_epochs ) = mpi_model .train_epoch ()
886
891
e = e_old + effective_epochs
892
+ g .write_unique ('Finished training of epoch {:.2f}/{}\n ' .format (
893
+ e , num_epochs ))
887
894
895
+ # TODO(KGF): add diagnostic about "saving to epoch X"?
888
896
loader .verbose = False # True during the first iteration
889
897
if g .task_index == 0 :
890
898
specific_builder .save_model_weights (train_model , int (round (e )))
0 commit comments