-
Notifications
You must be signed in to change notification settings - Fork 258
Open
Description
ValueError Traceback (most recent call last)
<ipython-input-50-9bfdddf06ca4> in <module>
----> 1 features, labels = generate_features_and_labels()
<ipython-input-49-e1fbb8357030> in generate_features_and_labels()
15 label_uniq_ids, label_row_ids = np.unique(all_labels, return_inverse=True)
16 label_row_ids = label_row_ids.astype(np.int32, copy=False)
---> 17 onehot_labels = to_categorical(label_row_ids, len(label_uniq_ids))
18 return np.stack(all_features), onehot_labels
19
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/utils/np_utils.py in to_categorical(y, num_classes, dtype)
73 y = y.ravel()
74 if not num_classes:
---> 75 num_classes = np.max(y) + 1
76 n = y.shape[0]
77 categorical = np.zeros((n, num_classes), dtype=dtype)
<__array_function__ internals> in amax(*args, **kwargs)
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py in amax(a, axis, out, keepdims, initial, where)
2704 """
2705 return _wrapreduction(a, np.maximum, 'max', axis, None, out,
-> 2706 keepdims=keepdims, initial=initial, where=where)
2707
2708
/opt/conda/lib/python3.7/site-packages/numpy/core/fromnumeric.py in _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs)
85 return reduction(axis=axis, out=out, **passkwargs)
86
---> 87 return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
88
89
ValueError: zero-size array to reduction operation maximum which has no identity
Hello,I'm facing this ValueError when calling 'generate_features_and_labels()' function ,I tried wrapping this with special case but it didn't work ,please help.
generate_features_and_labels() function:
def generate_features_and_labels():
all_features = []
all_labels = []
genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock']
for genre in genres:
sound_files = glob.glob('genres/'+genre+'/*.au')
print('Processing %d songs in %s genre...' % (len(sound_files), genre))
for f in sound_files:
features = extract_features_song(f)
all_features.append(features)
all_labels.append(genre)
# convert labels to one-hot encoding
label_uniq_ids, label_row_ids = np.unique(all_labels, return_inverse=True)
label_row_ids = label_row_ids.astype(np.int32, copy=False)
onehot_labels = to_categorical(label_row_ids, len(label_uniq_ids))
return np.stack(all_features), onehot_labels
Metadata
Metadata
Assignees
Labels
No labels