|
| 1 | +# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +import paddle |
| 19 | + |
| 20 | +from fastdeploy.model_executor.ops.gpu import set_value_by_flags_and_idx |
| 21 | + |
| 22 | + |
| 23 | +def set_value_by_flags_and_idx_numpy( |
| 24 | + pre_ids_all, input_ids, seq_lens_this_time, seq_lens_encoder, seq_lens_decoder, step_idx, stop_flags |
| 25 | +): |
| 26 | + """Numpy reference implementation""" |
| 27 | + result = pre_ids_all.copy() |
| 28 | + bs = seq_lens_this_time.shape[0] |
| 29 | + for i in range(bs): |
| 30 | + if stop_flags[i]: |
| 31 | + continue |
| 32 | + seq_len_enc = seq_lens_encoder[i] |
| 33 | + seq_len_dec = seq_lens_decoder[i] |
| 34 | + current_step_idx = step_idx[i] |
| 35 | + if seq_len_enc == 0 and seq_len_dec == 0: |
| 36 | + continue |
| 37 | + if current_step_idx >= 0: |
| 38 | + if seq_len_enc > 0: |
| 39 | + token_idx = seq_len_enc - 1 |
| 40 | + token_to_assign = input_ids[i, token_idx] |
| 41 | + else: |
| 42 | + token_to_assign = input_ids[i, 0] |
| 43 | + result[i, current_step_idx] = token_to_assign |
| 44 | + return result |
| 45 | + |
| 46 | + |
| 47 | +class TestSetValueByFlagsAndIdxRandom(unittest.TestCase): |
| 48 | + """Random case testing""" |
| 49 | + |
| 50 | + def setUp(self): |
| 51 | + paddle.seed(42) |
| 52 | + np.random.seed(42) |
| 53 | + batch_size = 10 |
| 54 | + max_length = 10 |
| 55 | + max_input_length = 15 |
| 56 | + |
| 57 | + # Generate random inputs |
| 58 | + self.pre_ids_all_np = np.random.randint(0, 1000, size=(batch_size, max_length), dtype="int64") |
| 59 | + self.input_ids_np = np.random.randint(0, 1000, size=(batch_size, max_input_length), dtype="int64") |
| 60 | + self.seq_lens_this_time_np = np.random.randint(0, max_input_length, size=(batch_size,), dtype="int32") |
| 61 | + self.seq_lens_encoder_np = np.random.randint(0, max_input_length, size=(batch_size,), dtype="int32") |
| 62 | + self.seq_lens_decoder_np = np.random.randint(0, max_input_length, size=(batch_size,), dtype="int32") |
| 63 | + self.step_idx_np = np.random.randint(0, max_length, size=(batch_size,), dtype="int64") |
| 64 | + self.stop_flags_np = np.random.choice([True, False], size=(batch_size,), p=[0.1, 0.9]) |
| 65 | + |
| 66 | + def test_set_value_by_flags_and_idx(self): |
| 67 | + # NumPy baseline |
| 68 | + numpy_out = set_value_by_flags_and_idx_numpy( |
| 69 | + self.pre_ids_all_np, |
| 70 | + self.input_ids_np, |
| 71 | + self.seq_lens_this_time_np, |
| 72 | + self.seq_lens_encoder_np, |
| 73 | + self.seq_lens_decoder_np, |
| 74 | + self.step_idx_np, |
| 75 | + self.stop_flags_np, |
| 76 | + ) |
| 77 | + # custom op |
| 78 | + pre_ids_all = paddle.to_tensor(self.pre_ids_all_np) |
| 79 | + set_value_by_flags_and_idx( |
| 80 | + pre_ids_all, |
| 81 | + paddle.to_tensor(self.input_ids_np), |
| 82 | + paddle.to_tensor(self.seq_lens_this_time_np), |
| 83 | + paddle.to_tensor(self.seq_lens_encoder_np), |
| 84 | + paddle.to_tensor(self.seq_lens_decoder_np), |
| 85 | + paddle.to_tensor(self.step_idx_np), |
| 86 | + paddle.to_tensor(self.stop_flags_np), |
| 87 | + ) |
| 88 | + # Ensure outputs match exactly |
| 89 | + np.testing.assert_array_equal(numpy_out, pre_ids_all.numpy()) |
| 90 | + |
| 91 | + |
| 92 | +class TestSetValueByFlagsAndIdxCornerCases(unittest.TestCase): |
| 93 | + """Cover corner cases""" |
| 94 | + |
| 95 | + def test_encoder_update(self): |
| 96 | + # encoder case: seq_lens_encoder > 0, use last token |
| 97 | + pre_ids_all = np.zeros((1, 5), dtype="int64") |
| 98 | + input_ids = np.array([[11, 12, 13]], dtype="int64") |
| 99 | + seq_lens_this_time = np.array([3], dtype="int32") |
| 100 | + seq_lens_encoder = np.array([3], dtype="int32") |
| 101 | + seq_lens_decoder = np.array([0], dtype="int32") |
| 102 | + step_idx = np.array([0], dtype="int64") |
| 103 | + stop_flags = np.array([False], dtype="bool") |
| 104 | + |
| 105 | + expected = set_value_by_flags_and_idx_numpy( |
| 106 | + pre_ids_all, input_ids, seq_lens_this_time, seq_lens_encoder, seq_lens_decoder, step_idx, stop_flags |
| 107 | + ) |
| 108 | + pre_ids_all_tensor = paddle.to_tensor(pre_ids_all) |
| 109 | + set_value_by_flags_and_idx( |
| 110 | + pre_ids_all_tensor, |
| 111 | + paddle.to_tensor(input_ids), |
| 112 | + paddle.to_tensor(seq_lens_this_time), |
| 113 | + paddle.to_tensor(seq_lens_encoder), |
| 114 | + paddle.to_tensor(seq_lens_decoder), |
| 115 | + paddle.to_tensor(step_idx), |
| 116 | + paddle.to_tensor(stop_flags), |
| 117 | + ) |
| 118 | + np.testing.assert_array_equal(expected, pre_ids_all_tensor.numpy()) |
| 119 | + |
| 120 | + def test_decoder_update(self): |
| 121 | + # decoder case: seq_lens_encoder=0, use first token |
| 122 | + pre_ids_all = np.zeros((1, 4), dtype="int64") |
| 123 | + input_ids = np.array([[101, 102]], dtype="int64") |
| 124 | + seq_lens_this_time = np.array([2], dtype="int32") |
| 125 | + seq_lens_encoder = np.array([0], dtype="int32") |
| 126 | + seq_lens_decoder = np.array([2], dtype="int32") |
| 127 | + step_idx = np.array([2], dtype="int64") |
| 128 | + stop_flags = np.array([False], dtype="bool") |
| 129 | + |
| 130 | + expected = set_value_by_flags_and_idx_numpy( |
| 131 | + pre_ids_all, input_ids, seq_lens_this_time, seq_lens_encoder, seq_lens_decoder, step_idx, stop_flags |
| 132 | + ) |
| 133 | + pre_ids_all_tensor = paddle.to_tensor(pre_ids_all) |
| 134 | + set_value_by_flags_and_idx( |
| 135 | + pre_ids_all_tensor, |
| 136 | + paddle.to_tensor(input_ids), |
| 137 | + paddle.to_tensor(seq_lens_this_time), |
| 138 | + paddle.to_tensor(seq_lens_encoder), |
| 139 | + paddle.to_tensor(seq_lens_decoder), |
| 140 | + paddle.to_tensor(step_idx), |
| 141 | + paddle.to_tensor(stop_flags), |
| 142 | + ) |
| 143 | + np.testing.assert_array_equal(expected, pre_ids_all_tensor.numpy()) |
| 144 | + |
| 145 | + def test_stop_flag(self): |
| 146 | + # stop_flags=True, no update |
| 147 | + pre_ids_all = np.zeros((1, 3), dtype="int64") |
| 148 | + input_ids = np.array([[5, 6, 7]], dtype="int64") |
| 149 | + seq_lens_this_time = np.array([3], dtype="int32") |
| 150 | + seq_lens_encoder = np.array([3], dtype="int32") |
| 151 | + seq_lens_decoder = np.array([0], dtype="int32") |
| 152 | + step_idx = np.array([1], dtype="int64") |
| 153 | + stop_flags = np.array([True], dtype="bool") |
| 154 | + |
| 155 | + expected = set_value_by_flags_and_idx_numpy( |
| 156 | + pre_ids_all, input_ids, seq_lens_this_time, seq_lens_encoder, seq_lens_decoder, step_idx, stop_flags |
| 157 | + ) |
| 158 | + pre_ids_all_tensor = paddle.to_tensor(pre_ids_all) |
| 159 | + set_value_by_flags_and_idx( |
| 160 | + pre_ids_all_tensor, |
| 161 | + paddle.to_tensor(input_ids), |
| 162 | + paddle.to_tensor(seq_lens_this_time), |
| 163 | + paddle.to_tensor(seq_lens_encoder), |
| 164 | + paddle.to_tensor(seq_lens_decoder), |
| 165 | + paddle.to_tensor(step_idx), |
| 166 | + paddle.to_tensor(stop_flags), |
| 167 | + ) |
| 168 | + np.testing.assert_array_equal(expected, pre_ids_all_tensor.numpy()) |
| 169 | + |
| 170 | + def test_skip_when_both_len_zero(self): |
| 171 | + # seq_lens_encoder=0 and seq_lens_decoder=0, skip |
| 172 | + pre_ids_all = np.zeros((1, 3), dtype="int64") |
| 173 | + input_ids = np.array([[8, 9, 10]], dtype="int64") |
| 174 | + seq_lens_this_time = np.array([3], dtype="int32") |
| 175 | + seq_lens_encoder = np.array([0], dtype="int32") |
| 176 | + seq_lens_decoder = np.array([0], dtype="int32") |
| 177 | + step_idx = np.array([0], dtype="int64") |
| 178 | + stop_flags = np.array([False], dtype="bool") |
| 179 | + |
| 180 | + expected = pre_ids_all.copy() |
| 181 | + pre_ids_all_tensor = paddle.to_tensor(pre_ids_all) |
| 182 | + set_value_by_flags_and_idx( |
| 183 | + pre_ids_all_tensor, |
| 184 | + paddle.to_tensor(input_ids), |
| 185 | + paddle.to_tensor(seq_lens_this_time), |
| 186 | + paddle.to_tensor(seq_lens_encoder), |
| 187 | + paddle.to_tensor(seq_lens_decoder), |
| 188 | + paddle.to_tensor(step_idx), |
| 189 | + paddle.to_tensor(stop_flags), |
| 190 | + ) |
| 191 | + np.testing.assert_array_equal(expected, pre_ids_all_tensor.numpy()) |
| 192 | + |
| 193 | + def test_step_idx_negative(self): |
| 194 | + # step_idx < 0, skip |
| 195 | + pre_ids_all = np.zeros((1, 3), dtype="int64") |
| 196 | + input_ids = np.array([[42, 43, 44]], dtype="int64") |
| 197 | + seq_lens_this_time = np.array([3], dtype="int32") |
| 198 | + seq_lens_encoder = np.array([2], dtype="int32") |
| 199 | + seq_lens_decoder = np.array([1], dtype="int32") |
| 200 | + step_idx = np.array([-1], dtype="int64") |
| 201 | + stop_flags = np.array([False], dtype="bool") |
| 202 | + |
| 203 | + expected = pre_ids_all.copy() |
| 204 | + pre_ids_all_tensor = paddle.to_tensor(pre_ids_all) |
| 205 | + set_value_by_flags_and_idx( |
| 206 | + pre_ids_all_tensor, |
| 207 | + paddle.to_tensor(input_ids), |
| 208 | + paddle.to_tensor(seq_lens_this_time), |
| 209 | + paddle.to_tensor(seq_lens_encoder), |
| 210 | + paddle.to_tensor(seq_lens_decoder), |
| 211 | + paddle.to_tensor(step_idx), |
| 212 | + paddle.to_tensor(stop_flags), |
| 213 | + ) |
| 214 | + np.testing.assert_array_equal(expected, pre_ids_all_tensor.numpy()) |
| 215 | + |
| 216 | + |
| 217 | +if __name__ == "__main__": |
| 218 | + unittest.main() |
0 commit comments