|
| 1 | +import json |
| 2 | + |
| 3 | +from core import TEMPLATE, URL, build_request_payload, send_request |
| 4 | + |
| 5 | + |
| 6 | +def test_unstream_with_logprobs(): |
| 7 | + """ |
| 8 | + 测试非流式响应开启 logprobs 后,返回的 token 概率信息是否正确。 |
| 9 | + """ |
| 10 | + data = { |
| 11 | + "stream": False, |
| 12 | + "messages": [ |
| 13 | + {"role": "system", "content": "You are a helpful assistant."}, |
| 14 | + {"role": "user", "content": "牛顿的三大运动定律是什么?"}, |
| 15 | + ], |
| 16 | + "max_tokens": 3, |
| 17 | + } |
| 18 | + |
| 19 | + # 构建请求并发送 |
| 20 | + payload = build_request_payload(TEMPLATE, data) |
| 21 | + response = send_request(URL, payload) |
| 22 | + print(json.dumps(response.json(), indent=2, ensure_ascii=False)) |
| 23 | + resp_json = response.json() |
| 24 | + |
| 25 | + # 校验返回内容与概率信息 |
| 26 | + assert resp_json["choices"][0]["message"]["content"] == "牛顿的" |
| 27 | + assert resp_json["choices"][0]["logprobs"]["content"][0]["token"] == "牛顿" |
| 28 | + assert resp_json["choices"][0]["logprobs"]["content"][0]["logprob"] == -0.031025361269712448 |
| 29 | + assert resp_json["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0] == { |
| 30 | + "token": "牛顿", |
| 31 | + "logprob": -0.031025361269712448, |
| 32 | + "bytes": [231, 137, 155, 233, 161, 191], |
| 33 | + "top_logprobs": None, |
| 34 | + } |
| 35 | + assert resp_json["usage"] == { |
| 36 | + "prompt_tokens": 22, |
| 37 | + "total_tokens": 25, |
| 38 | + "completion_tokens": 3, |
| 39 | + "prompt_tokens_details": {"cached_tokens": 0}, |
| 40 | + } |
| 41 | + |
| 42 | + |
| 43 | +def test_unstream_without_logprobs(): |
| 44 | + """ |
| 45 | + 测试非流式响应关闭 logprobs 后,返回结果中不包含 logprobs 字段。 |
| 46 | + """ |
| 47 | + data = { |
| 48 | + "stream": False, |
| 49 | + "logprobs": False, |
| 50 | + "top_logprobs": None, |
| 51 | + "messages": [ |
| 52 | + {"role": "system", "content": "You are a helpful assistant."}, |
| 53 | + {"role": "user", "content": "牛顿的三大运动定律是什么?"}, |
| 54 | + ], |
| 55 | + "max_tokens": 3, |
| 56 | + } |
| 57 | + |
| 58 | + # 构建请求并发送 |
| 59 | + payload = build_request_payload(TEMPLATE, data) |
| 60 | + response = send_request(URL, payload) |
| 61 | + print(json.dumps(response.json(), indent=2, ensure_ascii=False)) |
| 62 | + resp_json = response.json() |
| 63 | + |
| 64 | + # 校验返回内容与 logprobs 字段 |
| 65 | + assert resp_json["choices"][0]["message"]["content"] == "牛顿的" |
| 66 | + assert resp_json["choices"][0]["logprobs"] is None |
| 67 | + assert resp_json["usage"] == { |
| 68 | + "prompt_tokens": 22, |
| 69 | + "total_tokens": 25, |
| 70 | + "completion_tokens": 3, |
| 71 | + "prompt_tokens_details": {"cached_tokens": 0}, |
| 72 | + } |
| 73 | + |
| 74 | + |
| 75 | +def test_stream_with_logprobs(): |
| 76 | + """ |
| 77 | + 测试流式响应开启 logprobs 后,首个 token 的概率信息是否正确。 |
| 78 | + """ |
| 79 | + data = { |
| 80 | + "stream": True, |
| 81 | + "messages": [ |
| 82 | + {"role": "system", "content": "You are a helpful assistant."}, |
| 83 | + {"role": "user", "content": "牛顿的三大运动定律是什么?"}, |
| 84 | + ], |
| 85 | + "max_tokens": 3, |
| 86 | + } |
| 87 | + |
| 88 | + payload = build_request_payload(TEMPLATE, data) |
| 89 | + response = send_request(URL, payload) |
| 90 | + |
| 91 | + # 解析首个包含 content 的流式 chunk |
| 92 | + result_chunk = {} |
| 93 | + for line in response.iter_lines(): |
| 94 | + if not line: |
| 95 | + continue |
| 96 | + decoded = line.decode("utf-8").removeprefix("data: ") |
| 97 | + if decoded == "[DONE]": |
| 98 | + break |
| 99 | + |
| 100 | + chunk = json.loads(decoded) |
| 101 | + content = chunk["choices"][0]["delta"].get("content") |
| 102 | + if content: |
| 103 | + result_chunk = chunk |
| 104 | + print(json.dumps(result_chunk, indent=2, ensure_ascii=False)) |
| 105 | + break |
| 106 | + |
| 107 | + # 校验概率字段 |
| 108 | + assert result_chunk["choices"][0]["delta"]["content"] == "牛顿" |
| 109 | + assert result_chunk["choices"][0]["logprobs"]["content"][0]["token"] == "牛顿" |
| 110 | + assert result_chunk["choices"][0]["logprobs"]["content"][0]["logprob"] == -0.031025361269712448 |
| 111 | + assert result_chunk["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0] == { |
| 112 | + "token": "牛顿", |
| 113 | + "logprob": -0.031025361269712448, |
| 114 | + "bytes": [231, 137, 155, 233, 161, 191], |
| 115 | + } |
| 116 | + |
| 117 | + |
| 118 | +def test_stream_without_logprobs(): |
| 119 | + """ |
| 120 | + 测试流式响应关闭 logprobs 后,确认响应中不包含 logprobs 字段。 |
| 121 | + """ |
| 122 | + data = { |
| 123 | + "stream": True, |
| 124 | + "logprobs": False, |
| 125 | + "top_logprobs": None, |
| 126 | + "messages": [ |
| 127 | + {"role": "system", "content": "You are a helpful assistant."}, |
| 128 | + {"role": "user", "content": "牛顿的三大运动定律是什么?"}, |
| 129 | + ], |
| 130 | + "max_tokens": 3, |
| 131 | + } |
| 132 | + |
| 133 | + payload = build_request_payload(TEMPLATE, data) |
| 134 | + response = send_request(URL, payload) |
| 135 | + |
| 136 | + # 解析首个包含 content 的流式 chunk |
| 137 | + result_chunk = {} |
| 138 | + for line in response.iter_lines(): |
| 139 | + if not line: |
| 140 | + continue |
| 141 | + decoded = line.decode("utf-8").removeprefix("data: ") |
| 142 | + if decoded == "[DONE]": |
| 143 | + break |
| 144 | + |
| 145 | + chunk = json.loads(decoded) |
| 146 | + content = chunk["choices"][0]["delta"].get("content") |
| 147 | + if content: |
| 148 | + result_chunk = chunk |
| 149 | + print(json.dumps(result_chunk, indent=2, ensure_ascii=False)) |
| 150 | + break |
| 151 | + |
| 152 | + # 校验 logprobs 字段不存在 |
| 153 | + assert result_chunk["choices"][0]["delta"]["content"] == "牛顿" |
| 154 | + assert result_chunk["choices"][0]["logprobs"] is None |
| 155 | + |
| 156 | + |
| 157 | +if __name__ == "__main__": |
| 158 | + test_unstream_with_logprobs() |
| 159 | + test_unstream_without_logprobs() |
| 160 | + test_stream_with_logprobs() |
| 161 | + test_stream_without_logprobs() |
0 commit comments