|
| 1 | +import argparse |
| 2 | +import os |
| 3 | +import re |
| 4 | +import sys |
| 5 | +import math |
| 6 | +import subprocess |
| 7 | +from datetime import datetime |
| 8 | + |
| 9 | +import paddle |
| 10 | +from graph_net import collect_stats_util |
| 11 | +from graph_net.paddle import utils |
| 12 | + |
| 13 | + |
| 14 | +def is_single_model_dir(model_dir): |
| 15 | + return os.path.isfile(f"{model_dir}/graph_net.json") |
| 16 | + |
| 17 | + |
| 18 | +def read_graph_source_and_tag(model_path): |
| 19 | + try: |
| 20 | + with open(os.path.join(model_path, "graph_net.json"), "r") as f: |
| 21 | + data = json.load(f) |
| 22 | + return data["source"], data["heuristic_tag"] |
| 23 | + except Exception: |
| 24 | + if "PaddleX" in model_path: |
| 25 | + return "PaddleX", "computer_vision" |
| 26 | + elif "PaddleNLP" in model_path: |
| 27 | + return "PaddleNLP", "nlp" |
| 28 | + elif "PaddleScience" in model_path: |
| 29 | + return "PaddleScience", "scientific_computing" |
| 30 | + else: |
| 31 | + return "unknown", "unknown" |
| 32 | + |
| 33 | + |
| 34 | +def get_input_spec(model_path): |
| 35 | + inputs_params_list = utils.load_converted_list_from_text(f"{model_path}") |
| 36 | + input_spec = [None] * len(inputs_params_list) |
| 37 | + for i, v in enumerate(inputs_params_list): |
| 38 | + dtype = v["info"]["dtype"] |
| 39 | + shape = v["info"]["shape"] |
| 40 | + input_spec[i] = paddle.static.InputSpec(shape, dtype) |
| 41 | + return input_spec |
| 42 | + |
| 43 | + |
| 44 | +class ProgramAnalyzer: |
| 45 | + def __init__(self): |
| 46 | + self.op_stats = {} |
| 47 | + self.input_dict = {} |
| 48 | + self.num_ops = 0 |
| 49 | + self.num_ops_misses_dtypes = 0 |
| 50 | + self.is_complete = True |
| 51 | + |
| 52 | + def update_op_stats(self, op_name, op_dtype): |
| 53 | + if op_name is not None: |
| 54 | + dtype_str = str(op_dtype).replace("paddle.", "") |
| 55 | + if self.op_stats.get(op_name, None) is None: |
| 56 | + self.op_stats[op_name] = collect_stats_util.OpStat( |
| 57 | + op_name, {dtype_str: 1}, 1 |
| 58 | + ) |
| 59 | + else: |
| 60 | + self.op_stats[op_name].op_dtypes[dtype_str] = ( |
| 61 | + self.op_stats[op_name].op_dtypes.get(dtype_str, 0) + 1 |
| 62 | + ) |
| 63 | + self.op_stats[op_name].count += 1 |
| 64 | + |
| 65 | + def parse_pir_value_dtypes(self, type_str): |
| 66 | + short_form2dtype = { |
| 67 | + "f32": "float32", |
| 68 | + "f16": "float16", |
| 69 | + "bf16": "bfloat16", |
| 70 | + "i64": "int64", |
| 71 | + } |
| 72 | + # type_str: "vec[tensor<1x18x13x9xf32>,tensor<1x9x13x9xf32>]" |
| 73 | + matches = re.findall(r"tensor<([^>]+)>", type_str) |
| 74 | + dtype_strs = [] |
| 75 | + for s in matches: |
| 76 | + parts = s.split("x") |
| 77 | + assert len(parts) > 0 |
| 78 | + |
| 79 | + dtype = parts[-1].lower() |
| 80 | + dtype_strs.append(short_form2dtype[dtype]) |
| 81 | + return dtype_strs |
| 82 | + |
| 83 | + def __call__(self, program): |
| 84 | + assert isinstance(program, paddle.base.libpaddle.pir.Program) |
| 85 | + |
| 86 | + self.op_stats = {} |
| 87 | + self.num_ops_misses_dtypes = 0 |
| 88 | + self.num_ops = 0 |
| 89 | + for block in program.blocks: |
| 90 | + for op in block.ops: |
| 91 | + op_name = None |
| 92 | + op_dtype = None |
| 93 | + if op.name() == "pd_op.data": |
| 94 | + op_name = "data" |
| 95 | + op_attrs = op.attrs() |
| 96 | + op_dtype = op_attrs["dtype"] |
| 97 | + self.input_dict[op_attrs["name"]] = { |
| 98 | + "dtype": str(op_dtype).replace("paddle.", ""), |
| 99 | + "shape": op_attrs["shape"], |
| 100 | + } |
| 101 | + elif op.name().startswith("pd_op."): |
| 102 | + self.num_ops += 1 |
| 103 | + op_name = op.name().replace("pd_op.", "") |
| 104 | + try: |
| 105 | + if len(op.results()) > 0: |
| 106 | + out = op.results()[0] |
| 107 | + if out.is_dense_tensor_type(): |
| 108 | + op_dtype = out.dtype |
| 109 | + else: |
| 110 | + # for paddle.base.libpaddle.pir.VectorType, but cannot be accurately determined |
| 111 | + if op_name in [ |
| 112 | + "split", |
| 113 | + "split_with_num", |
| 114 | + "meshgrid", |
| 115 | + "distribute_fpn_proposals", |
| 116 | + ]: |
| 117 | + op_dtype = self.parse_pir_value_dtypes( |
| 118 | + str(out.type()) |
| 119 | + )[0] |
| 120 | + else: |
| 121 | + assert False, f"Unsupport op: {op}" |
| 122 | + except Exception: |
| 123 | + if self.num_ops_misses_dtypes == 0: |
| 124 | + print(f"dtype inference failed for {op_name}") |
| 125 | + if op_dtype is not None: |
| 126 | + self.update_op_stats(op_name, op_dtype) |
| 127 | + else: |
| 128 | + self.num_ops_misses_dtypes += 1 |
| 129 | + elif not op.name().startswith("builtin."): |
| 130 | + assert False, f"Unrecognized op: {op}" |
| 131 | + |
| 132 | + if self.num_ops_misses_dtypes > 0: |
| 133 | + self.is_complete = False |
| 134 | + |
| 135 | + def summary(self): |
| 136 | + print( |
| 137 | + f"Totally {self.num_ops} operators, and {self.num_ops_misses_dtypes} operators failed to inference dtypes." |
| 138 | + ) |
| 139 | + |
| 140 | + |
| 141 | +def collect_op_stats(model, model_path): |
| 142 | + assert isinstance(model, paddle.nn.Layer), f"{type(model)=}" |
| 143 | + try: |
| 144 | + static_model = paddle.jit.to_static( |
| 145 | + model, |
| 146 | + input_spec=get_input_spec(model_path), |
| 147 | + full_graph=True, |
| 148 | + backend=None, |
| 149 | + ) |
| 150 | + static_model.eval() |
| 151 | + program = static_model.forward.concrete_program.main_program |
| 152 | + |
| 153 | + program_analyzer = ProgramAnalyzer() |
| 154 | + program_analyzer(program) |
| 155 | + program_analyzer.summary() |
| 156 | + return program_analyzer |
| 157 | + except Exception: |
| 158 | + print("Failed with to_static") |
| 159 | + return None |
| 160 | + |
| 161 | + |
| 162 | +def collect_model_stats(model_path, log_prompt): |
| 163 | + file_path = os.path.join(model_path, "model.py") |
| 164 | + model_class = collect_stats_util.load_class_from_file(file_path, "GraphModule") |
| 165 | + model = model_class() |
| 166 | + |
| 167 | + model_size = 0 |
| 168 | + input_dtypes = {} |
| 169 | + param_dtypes = {} |
| 170 | + ops_count_dict = {} |
| 171 | + op_dtypes = {} |
| 172 | + |
| 173 | + program_analyzer = collect_op_stats(model, model_path) |
| 174 | + if program_analyzer is not None: |
| 175 | + for op_name, stat in sorted(program_analyzer.op_stats.items()): |
| 176 | + ops_count_dict[op_name] = stat.count |
| 177 | + for dtype_str, num in stat.op_dtypes.items(): |
| 178 | + if dtype_str is not None and dtype_str != "None": |
| 179 | + op_dtypes[dtype_str] = op_dtypes.get(dtype_str, 0) + num |
| 180 | + |
| 181 | + inputs_params = utils.load_converted_from_text(f"{model_path}") |
| 182 | + params = inputs_params["weight_info"] |
| 183 | + inputs = inputs_params["input_info"] |
| 184 | + |
| 185 | + for name, value in program_analyzer.input_dict.items(): |
| 186 | + dtype_str = value["dtype"] |
| 187 | + if name in params.keys(): |
| 188 | + param_numel = math.prod(value["shape"]) |
| 189 | + model_size += param_numel |
| 190 | + param_dtypes[dtype_str] = param_dtypes.get(dtype_str, 0) + 1 |
| 191 | + elif name in inputs.keys(): |
| 192 | + input_dtypes[dtype_str] = input_dtypes.get(dtype_str, 0) + 1 |
| 193 | + |
| 194 | + num_outputs = collect_stats_util.get_number_of_returns( |
| 195 | + file_path, "GraphModule", "forward" |
| 196 | + ) |
| 197 | + num_ops = program_analyzer.num_ops if program_analyzer is not None else 0 |
| 198 | + source, heuristic_tag = read_graph_source_and_tag(model_path) |
| 199 | + is_complete = ( |
| 200 | + program_analyzer.is_complete if program_analyzer is not None else False |
| 201 | + ) |
| 202 | + print( |
| 203 | + f"model_stats collection information: model_path={model_path}, method=to_static, is_ops_complete={is_complete}" |
| 204 | + ) |
| 205 | + |
| 206 | + stats = collect_stats_util.ModelStats( |
| 207 | + model_path=model_path, |
| 208 | + num_inputs=sum(input_dtypes.values()), |
| 209 | + num_params=sum(param_dtypes.values()), |
| 210 | + num_outputs=num_outputs, |
| 211 | + num_ops=num_ops, |
| 212 | + model_size_in_billion=model_size / 1e9, |
| 213 | + input_dtypes=input_dtypes, |
| 214 | + param_dtypes=param_dtypes, |
| 215 | + op_dtypes=op_dtypes, |
| 216 | + ops=ops_count_dict, |
| 217 | + source=source, |
| 218 | + heuristic_tag=heuristic_tag, |
| 219 | + ) |
| 220 | + collect_stats_util.print_model_stats(stats, log_prompt) |
| 221 | + |
| 222 | + |
| 223 | +def main(args): |
| 224 | + if args.model_path is not None: |
| 225 | + assert os.path.isdir(args.model_path) |
| 226 | + assert is_single_model_dir(args.model_path) |
| 227 | + timestamp_sec = datetime.now().timestamp() |
| 228 | + dt = datetime.fromtimestamp(timestamp_sec) |
| 229 | + formatted_dt = dt.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] |
| 230 | + print(f"[{formatted_dt}] Collect information for {args.model_path}") |
| 231 | + collect_model_stats(args.model_path, args.log_prompt) |
| 232 | + else: |
| 233 | + graph_net_samples_path = ( |
| 234 | + (graph_net.paddle.samples_util.get_default_samples_directory()) |
| 235 | + if args.graph_net_samples_path is None |
| 236 | + else args.graph_net_samples_path |
| 237 | + ) |
| 238 | + |
| 239 | + i = 0 |
| 240 | + for root, dirs, files in os.walk(graph_net_samples_path): |
| 241 | + if is_single_model_dir(root): |
| 242 | + print(f"[{i}] Collect information for {root}") |
| 243 | + cmd = [ |
| 244 | + "python", |
| 245 | + "-m", |
| 246 | + "graph_net.paddle.collect_stats", |
| 247 | + f"--device={args.device}", |
| 248 | + f"--model-path={root}", |
| 249 | + f"--log-prompt={args.log_prompt}", |
| 250 | + ] |
| 251 | + result = subprocess.run( |
| 252 | + cmd, |
| 253 | + stdout=subprocess.PIPE, |
| 254 | + stderr=subprocess.PIPE, |
| 255 | + text=True, |
| 256 | + timeout=600, |
| 257 | + ) |
| 258 | + print(result.stdout) |
| 259 | + if result.returncode != 0: |
| 260 | + print(result.stderr) |
| 261 | + i += 1 |
| 262 | + |
| 263 | + |
| 264 | +if __name__ == "__main__": |
| 265 | + parser = argparse.ArgumentParser( |
| 266 | + description="Collect stats for computation graph samples. return 0 if success" |
| 267 | + ) |
| 268 | + parser.add_argument( |
| 269 | + "--device", |
| 270 | + type=str, |
| 271 | + required=False, |
| 272 | + default="cuda", |
| 273 | + help="Device for testing the compiler (e.g., 'cpu' or 'cuda')", |
| 274 | + ) |
| 275 | + parser.add_argument( |
| 276 | + "--model-path", |
| 277 | + type=str, |
| 278 | + required=False, |
| 279 | + default=None, |
| 280 | + help="Computation graph sample directory. e.g '../../paddle_samples/PaddleX/ResNet18'", |
| 281 | + ) |
| 282 | + parser.add_argument( |
| 283 | + "--graph-net-samples-path", |
| 284 | + type=str, |
| 285 | + required=False, |
| 286 | + default=None, |
| 287 | + help="GraphNet samples directory. e.g '../../paddle_samples'", |
| 288 | + ) |
| 289 | + parser.add_argument( |
| 290 | + "--log-prompt", |
| 291 | + type=str, |
| 292 | + required=False, |
| 293 | + default="graph-net-collect-stats-log", |
| 294 | + help="Log prompt for stats log filtering.", |
| 295 | + ) |
| 296 | + args = parser.parse_args() |
| 297 | + main(args=args) |
0 commit comments