@@ -66,10 +66,10 @@ def analysis(args):
6666 data = {"Compiler" : [], "log2(speedup)" : []}
6767
6868 # A: CINN (Simulate)
69- data ["log2(speedup)" ].extend (
70- np .random .normal (loc = 0.35 , scale = 0.2 , size = num_samples_per_compiler )
71- )
72- data ["Compiler" ].extend (["CINN" ] * num_samples_per_compiler )
69+ # data["log2(speedup)"].extend(
70+ # np.random.normal(loc=0.35, scale=0.2, size=num_samples_per_compiler)
71+ # )
72+ # data["Compiler"].extend(["CINN"] * num_samples_per_compiler)
7373
7474 # B: torch.inductor
7575 # inductor_log = os.path.join(args.test_compiler_log_file)
@@ -80,37 +80,37 @@ def analysis(args):
8080 data ["Compiler" ].extend (["torch.inductor" ] * len (log2_speedups ))
8181
8282 # C: tvm (Simulate)
83- data ["log2(speedup)" ].extend (
84- np .random .normal (loc = 0.3 , scale = 0.15 , size = num_samples_per_compiler )
85- )
86- data ["Compiler" ].extend (["tvm" ] * num_samples_per_compiler )
83+ # data["log2(speedup)"].extend(
84+ # np.random.normal(loc=0.3, scale=0.15, size=num_samples_per_compiler)
85+ # )
86+ # data["Compiler"].extend(["tvm"] * num_samples_per_compiler)
8787
8888 # D: XLA (Simulate)
89- data ["log2(speedup)" ].extend (
90- np .concatenate (
91- [
92- np .random .normal (
93- loc = - 0.5 , scale = 0.1 , size = int (num_samples_per_compiler * 0.6 )
94- ),
95- np .random .normal (
96- loc = 0.2 , scale = 0.2 , size = int (num_samples_per_compiler * 0.4 )
97- ),
98- ]
99- )
100- )
101- data ["Compiler" ].extend (["XLA" ] * num_samples_per_compiler )
89+ # data["log2(speedup)"].extend(
90+ # np.concatenate(
91+ # [
92+ # np.random.normal(
93+ # loc=-0.5, scale=0.1, size=int(num_samples_per_compiler * 0.6)
94+ # ),
95+ # np.random.normal(
96+ # loc=0.2, scale=0.2, size=int(num_samples_per_compiler * 0.4)
97+ # ),
98+ # ]
99+ # )
100+ # )
101+ # data["Compiler"].extend(["XLA"] * num_samples_per_compiler)
102102
103103 # E: TensorRT (Simulate)
104- data ["log2(speedup)" ].extend (
105- np .random .normal (loc = 0.5 , scale = 0.1 , size = num_samples_per_compiler )
106- )
107- data ["Compiler" ].extend (["TensorRT" ] * num_samples_per_compiler )
104+ # data["log2(speedup)"].extend(
105+ # np.random.normal(loc=0.5, scale=0.1, size=num_samples_per_compiler)
106+ # )
107+ # data["Compiler"].extend(["TensorRT"] * num_samples_per_compiler)
108108
109109 # F: BladeDISC (Simulate)
110- data ["log2(speedup)" ].extend (
111- np .random .normal (loc = 0.05 , scale = 0.3 , size = num_samples_per_compiler )
112- )
113- data ["Compiler" ].extend (["BladeDISC" ] * num_samples_per_compiler )
110+ # data["log2(speedup)"].extend(
111+ # np.random.normal(loc=0.05, scale=0.3, size=num_samples_per_compiler)
112+ # )
113+ # data["Compiler"].extend(["BladeDISC"] * num_samples_per_compiler)
114114
115115 df = pd .DataFrame (data )
116116 df ["Compiler" ] = pd .Categorical (df ["Compiler" ], categories = compilers , ordered = True )
0 commit comments