|
| 1 | +import torch |
| 2 | +import copy |
| 3 | +import operator |
| 4 | +from collections import defaultdict |
| 5 | +from dataclasses import dataclass |
| 6 | + |
| 7 | + |
| 8 | +def fold_range_to_submodule( |
| 9 | + original_gm: torch.fx.GraphModule, |
| 10 | + start_node_idx: int, |
| 11 | + end_node_idx: int, |
| 12 | + submodule_hook=None, |
| 13 | + submodule_name="extraced_submodule", |
| 14 | +): |
| 15 | + original_gm = copy.deepcopy(original_gm) |
| 16 | + submodule_body_nodes = list(original_gm.graph.nodes)[start_node_idx:end_node_idx] |
| 17 | + |
| 18 | + def get_body_nodes(): |
| 19 | + return submodule_body_nodes |
| 20 | + |
| 21 | + assert len(get_body_nodes()) > 0 |
| 22 | + |
| 23 | + for idx, original_node in enumerate(get_body_nodes()): |
| 24 | + assert original_node.op not in { |
| 25 | + "placeholder", |
| 26 | + "output", |
| 27 | + }, f"{idx=}, {original_node.op=}" |
| 28 | + |
| 29 | + submodule_input_nodes, submodule_output_nodes = _get_submodule_inputs_and_outputs( |
| 30 | + original_gm=original_gm, |
| 31 | + start_node_idx=start_node_idx, |
| 32 | + end_node_idx=end_node_idx, |
| 33 | + ) |
| 34 | + |
| 35 | + def get_input_nodes(): |
| 36 | + return submodule_input_nodes |
| 37 | + |
| 38 | + def get_output_nodes(): |
| 39 | + return submodule_output_nodes |
| 40 | + |
| 41 | + def get_name2sub_submodule(): |
| 42 | + used_module_names = set() |
| 43 | + for node in get_body_nodes(): |
| 44 | + if node.op == "call_module": |
| 45 | + used_module_names.add(node.target) |
| 46 | + return { |
| 47 | + name: module |
| 48 | + for name, module in original_gm.named_modules() |
| 49 | + if name in used_module_names |
| 50 | + } |
| 51 | + |
| 52 | + new_graph = torch.fx.Graph() |
| 53 | + # Create a mapping for nodes from original graph to new graph |
| 54 | + node_map = {} |
| 55 | + |
| 56 | + # Add placeholder nodes for inputs |
| 57 | + for original_node in get_input_nodes(): |
| 58 | + new_node = new_graph.placeholder(original_node.name) |
| 59 | + node_map[original_node] = new_node |
| 60 | + |
| 61 | + # Copy body nodes |
| 62 | + for original_node in get_body_nodes(): |
| 63 | + print(original_node) |
| 64 | + new_node = new_graph.node_copy(original_node, lambda x: node_map[x]) |
| 65 | + node_map[original_node] = new_node |
| 66 | + |
| 67 | + # Add output nodes |
| 68 | + output_args = [] |
| 69 | + for original_node in get_output_nodes(): |
| 70 | + output_args.append(node_map[original_node]) |
| 71 | + new_graph.output(tuple(output_args)) |
| 72 | + |
| 73 | + # Create the new GraphModule |
| 74 | + # This assumes no submodules are being extracted, or they are handled separately |
| 75 | + new_sub_module = torch.fx.GraphModule(get_name2sub_submodule(), new_graph) |
| 76 | + if submodule_hook is not None: |
| 77 | + new_sub_module = submodule_hook(new_sub_module) |
| 78 | + # Replace with submodule node |
| 79 | + original_gm.add_submodule(submodule_name, new_sub_module) |
| 80 | + with original_gm.graph.inserting_after(get_body_nodes()[-1]): |
| 81 | + submodule_node = original_gm.graph.call_module( |
| 82 | + submodule_name, tuple(get_input_nodes()) |
| 83 | + ) |
| 84 | + prev_node = submodule_node |
| 85 | + for idx, original_output in enumerate(get_output_nodes()): |
| 86 | + with original_gm.graph.inserting_after(prev_node): |
| 87 | + new_output_node = original_gm.graph.call_function( |
| 88 | + operator.getitem, (submodule_node, idx) |
| 89 | + ) |
| 90 | + node_map[original_output] = new_output_node |
| 91 | + prev_node = new_output_node |
| 92 | + |
| 93 | + # Replace all use of outputs |
| 94 | + for original_output in get_output_nodes(): |
| 95 | + original_output.replace_all_uses_with(node_map[original_output]) |
| 96 | + |
| 97 | + # Erase old nodes |
| 98 | + for node in reversed(get_body_nodes()): |
| 99 | + original_gm.graph.erase_node(node) |
| 100 | + |
| 101 | + original_gm.recompile() |
| 102 | + |
| 103 | + return original_gm |
| 104 | + |
| 105 | + |
| 106 | +@dataclass |
| 107 | +class NodeProducedOrConsumedCountCtx: |
| 108 | + node2before_input: defaultdict(int) |
| 109 | + node2body: defaultdict(int) |
| 110 | + node2after_output: defaultdict(int) |
| 111 | + |
| 112 | + |
| 113 | +def _get_submodule_inputs_and_outputs( |
| 114 | + original_gm: torch.fx.GraphModule, |
| 115 | + start_node_idx: int, |
| 116 | + end_node_idx: int, |
| 117 | +): |
| 118 | + count_ctx = NodeProducedOrConsumedCountCtx( |
| 119 | + defaultdict(int), |
| 120 | + defaultdict(int), |
| 121 | + defaultdict(int), |
| 122 | + ) |
| 123 | + node_list = list(original_gm.graph.nodes) |
| 124 | + |
| 125 | + def get_related_node(node): |
| 126 | + yield from node.args |
| 127 | + yield node |
| 128 | + |
| 129 | + for node in node_list[0:start_node_idx]: |
| 130 | + for related_node in get_related_node(node): |
| 131 | + count_ctx.node2before_input[related_node] += 1 |
| 132 | + |
| 133 | + for node in node_list[start_node_idx:end_node_idx]: |
| 134 | + for related_node in get_related_node(node): |
| 135 | + count_ctx.node2body[related_node] += 1 |
| 136 | + |
| 137 | + for node in node_list[end_node_idx:]: |
| 138 | + for related_node in get_related_node(node): |
| 139 | + count_ctx.node2after_output[related_node] += 1 |
| 140 | + |
| 141 | + input_nodes = [ |
| 142 | + node |
| 143 | + for node in node_list |
| 144 | + if count_ctx.node2before_input[node] > 0 |
| 145 | + if count_ctx.node2body[node] > 0 |
| 146 | + ] |
| 147 | + |
| 148 | + output_nodes = [ |
| 149 | + node |
| 150 | + for node in node_list |
| 151 | + if not (count_ctx.node2before_input[node] > 0) |
| 152 | + if count_ctx.node2body[node] > 0 |
| 153 | + if count_ctx.node2after_output[node] > 0 |
| 154 | + ] |
| 155 | + |
| 156 | + return input_nodes, output_nodes |
0 commit comments