|
| 1 | +import os |
| 2 | +import torch |
| 3 | +from graph_net.torch.fx_graph_module_util import get_torch_module_and_inputs |
| 4 | +from graph_net.torch.fx_graph_parse_util import parse_sole_graph_module |
| 5 | +from graph_net.tensor_meta import TensorMeta |
| 6 | +from pathlib import Path |
| 7 | +import shutil |
| 8 | +from graph_net.torch.utils import apply_templates |
| 9 | +from graph_net.imp_util import load_module |
| 10 | +import inspect |
| 11 | + |
| 12 | + |
| 13 | +class GraphVariableRenamer: |
| 14 | + """ |
| 15 | + Used by graph_net.model_path_handler |
| 16 | + """ |
| 17 | + |
| 18 | + def __init__(self, config: dict = None): |
| 19 | + if config is None: |
| 20 | + config = {} |
| 21 | + self.config = self._make_config(**config) |
| 22 | + self.data_input_predicator = self._make_data_input_predicator(self.config) |
| 23 | + self.model_runnable_predicator = self._make_model_runnable_predicator( |
| 24 | + self.config |
| 25 | + ) |
| 26 | + |
| 27 | + def _make_data_input_predicator(self, config): |
| 28 | + module = load_module(config["data_input_predicator_filepath"]) |
| 29 | + cls = getattr(module, config["data_input_predicator_class_name"]) |
| 30 | + return cls(config["data_input_predicator_config"]) |
| 31 | + |
| 32 | + def _make_model_runnable_predicator(self, config): |
| 33 | + module = load_module(config["model_runnable_predicator_filepath"]) |
| 34 | + cls = getattr(module, config["model_runnable_predicator_class_name"]) |
| 35 | + return cls(config["model_runnable_predicator_config"]) |
| 36 | + |
| 37 | + def _make_config( |
| 38 | + self, |
| 39 | + data_input_predicator_filepath, |
| 40 | + model_runnable_predicator_filepath, |
| 41 | + output_dir="./tmp/graph_variable_renamer_dir", |
| 42 | + filter_path=None, |
| 43 | + filter_config=None, |
| 44 | + post_extract_process_path=None, |
| 45 | + post_extract_process_class_name=None, |
| 46 | + post_extract_process_config=None, |
| 47 | + data_input_predicator_class_name="DataInputPredicator", |
| 48 | + model_runnable_predicator_class_name="ModelRunner", |
| 49 | + data_input_predicator_config=None, |
| 50 | + model_runnable_predicator_config=None, |
| 51 | + model_path_prefix="", |
| 52 | + **kwargs, |
| 53 | + ): |
| 54 | + if post_extract_process_config is None: |
| 55 | + post_extract_process_config = {} |
| 56 | + if data_input_predicator_config is None: |
| 57 | + data_input_predicator_config = {} |
| 58 | + if model_runnable_predicator_config is None: |
| 59 | + model_runnable_predicator_config = {} |
| 60 | + return { |
| 61 | + "output_dir": output_dir, |
| 62 | + "filter_path": filter_path, |
| 63 | + "filter_config": filter_config if filter_config is not None else {}, |
| 64 | + "post_extract_process_path": post_extract_process_path, |
| 65 | + "post_extract_process_class_name": post_extract_process_class_name, |
| 66 | + "post_extract_process_config": post_extract_process_config, |
| 67 | + "data_input_predicator_filepath": data_input_predicator_filepath, |
| 68 | + "data_input_predicator_class_name": data_input_predicator_class_name, |
| 69 | + "data_input_predicator_config": data_input_predicator_config, |
| 70 | + "model_runnable_predicator_filepath": model_runnable_predicator_filepath, |
| 71 | + "model_runnable_predicator_class_name": model_runnable_predicator_class_name, |
| 72 | + "model_runnable_predicator_config": model_runnable_predicator_config, |
| 73 | + "model_path_prefix": model_path_prefix, |
| 74 | + } |
| 75 | + |
| 76 | + def __call__(self, rel_model_path): |
| 77 | + src_model_path = os.path.join(self.config["model_path_prefix"], rel_model_path) |
| 78 | + module, inputs = get_torch_module_and_inputs(src_model_path) |
| 79 | + gm = parse_sole_graph_module(module, inputs) |
| 80 | + gm = self.rename_graph_variables(gm, inputs, src_model_path) |
| 81 | + dst_model_path = os.path.realpath( |
| 82 | + os.path.join(self.config["output_dir"], rel_model_path) |
| 83 | + ) |
| 84 | + Path(dst_model_path).parent.mkdir(parents=True, exist_ok=True) |
| 85 | + shutil.copytree(src_model_path, dst_model_path, dirs_exist_ok=True) |
| 86 | + self._update_model_py_file(gm, dst_model_path) |
| 87 | + self._update_weight_meta_py_file(src_model_path, dst_model_path) |
| 88 | + self._update_input_meta_py_file(src_model_path, dst_model_path) |
| 89 | + self._try_run(dst_model_path) |
| 90 | + |
| 91 | + def _try_run(self, model_path): |
| 92 | + assert self.model_runnable_predicator( |
| 93 | + model_path |
| 94 | + ), f"{model_path} is not a runnable model" |
| 95 | + |
| 96 | + def _update_model_py_file(self, graph_module, model_path): |
| 97 | + py_code = apply_templates(graph_module.code) |
| 98 | + (Path(model_path) / "model.py").write_text(py_code) |
| 99 | + |
| 100 | + def _update_weight_meta_py_file(self, src_model_path, dst_model_path): |
| 101 | + old_name_to_new_name = self._get_original_name_to_new_name( |
| 102 | + src_model_path, dst_model_path |
| 103 | + ) |
| 104 | + tensor_metas = TensorMeta.unserialize_from_py_file( |
| 105 | + os.path.join(src_model_path, "weight_meta.py"), |
| 106 | + ) |
| 107 | + for weight_meta in tensor_metas: |
| 108 | + assert weight_meta.name in old_name_to_new_name |
| 109 | + if weight_meta.original_name is None: |
| 110 | + weight_meta.original_name = weight_meta.name |
| 111 | + weight_meta.name = old_name_to_new_name[weight_meta.name] |
| 112 | + py_code = "\n\n".join( |
| 113 | + [weight_meta.serialize_to_py_str() for weight_meta in tensor_metas] |
| 114 | + ) |
| 115 | + (Path(dst_model_path) / "weight_meta.py").write_text(py_code) |
| 116 | + |
| 117 | + def _update_input_meta_py_file(self, src_model_path, dst_model_path): |
| 118 | + old_name_to_new_name = self._get_original_name_to_new_name( |
| 119 | + src_model_path, dst_model_path |
| 120 | + ) |
| 121 | + tensor_metas = TensorMeta.unserialize_from_py_file( |
| 122 | + os.path.join(src_model_path, "input_meta.py"), |
| 123 | + ) |
| 124 | + for input_meta in tensor_metas: |
| 125 | + assert input_meta.name in old_name_to_new_name |
| 126 | + if input_meta.original_name is None: |
| 127 | + input_meta.original_name = input_meta.name |
| 128 | + input_meta.name = old_name_to_new_name[input_meta.name] |
| 129 | + py_code = "\n\n".join( |
| 130 | + [input_meta.serialize_to_py_str() for input_meta in tensor_metas] |
| 131 | + ) |
| 132 | + (Path(dst_model_path) / "input_meta.py").write_text(py_code) |
| 133 | + |
| 134 | + def _get_original_name_to_new_name(self, src_model_path, dst_model_path): |
| 135 | + src_model = self._get_model(src_model_path) |
| 136 | + dst_model = self._get_model(dst_model_path) |
| 137 | + old_name_and_new_name_pairs = zip( |
| 138 | + self._get_input_names_from_signature(src_model), |
| 139 | + self._get_input_names_from_signature(dst_model), |
| 140 | + strict=True, |
| 141 | + ) |
| 142 | + return { |
| 143 | + old_name: new_name for old_name, new_name in old_name_and_new_name_pairs |
| 144 | + } |
| 145 | + |
| 146 | + def _get_model(self, model_path): |
| 147 | + py_module = load_module(os.path.join(model_path, "model.py")) |
| 148 | + GraphModule = getattr(py_module, "GraphModule") |
| 149 | + GraphModule.__graph_net_file_path__ = py_module.__graph_net_file_path__ |
| 150 | + return GraphModule() |
| 151 | + |
| 152 | + def _get_input_names_from_signature(self, module): |
| 153 | + return inspect.signature(module.forward).parameters |
| 154 | + |
| 155 | + def rename_graph_variables( |
| 156 | + self, gm: torch.fx.GraphModule, sample_inputs, model_path |
| 157 | + ): |
| 158 | + in_cnt = 0 |
| 159 | + w_cnt = 0 |
| 160 | + tmp_cnt = 0 |
| 161 | + |
| 162 | + arg_iter = iter(sample_inputs) |
| 163 | + for node in gm.graph.nodes: |
| 164 | + if "original_name" not in node.meta: |
| 165 | + node.meta["original_name"] = node.name |
| 166 | + |
| 167 | + if node.op == "placeholder": |
| 168 | + real_arg = next(arg_iter) |
| 169 | + is_weight = not self.data_input_predicator(model_path, node.name) |
| 170 | + if node.type is not None: |
| 171 | + if isinstance(node.type, type) and issubclass( |
| 172 | + node.type, torch.nn.parameter.Parameter |
| 173 | + ): |
| 174 | + is_weight = True |
| 175 | + elif real_arg is not None: |
| 176 | + if isinstance(real_arg, torch.nn.Parameter): |
| 177 | + is_weight = True |
| 178 | + |
| 179 | + if is_weight: |
| 180 | + new_name = f"w_{w_cnt}" |
| 181 | + w_cnt += 1 |
| 182 | + else: |
| 183 | + new_name = f"in_{in_cnt}" |
| 184 | + in_cnt += 1 |
| 185 | + |
| 186 | + node.name = new_name |
| 187 | + node.target = new_name |
| 188 | + |
| 189 | + elif node.op == "get_attr": |
| 190 | + node.name = f"w_{w_cnt}" |
| 191 | + w_cnt += 1 |
| 192 | + |
| 193 | + elif node.op != "output": |
| 194 | + node.name = f"tmp_{tmp_cnt}" |
| 195 | + tmp_cnt += 1 |
| 196 | + |
| 197 | + gm.graph.lint() |
| 198 | + gm.recompile() |
| 199 | + return gm |
0 commit comments