|
| 1 | +import torch |
| 2 | + |
| 3 | + |
| 4 | +class GraphModule(torch.nn.Module): |
| 5 | + def forward( |
| 6 | + self, |
| 7 | + L_stack0_0_: torch.Tensor, |
| 8 | + L_self_modules_intermediate_modules_dense_parameters_weight_: torch.nn.parameter.Parameter, |
| 9 | + L_self_modules_intermediate_modules_dense_parameters_bias_: torch.nn.parameter.Parameter, |
| 10 | + L_self_modules_output_modules_dense_parameters_weight_: torch.nn.parameter.Parameter, |
| 11 | + L_self_modules_output_modules_dense_parameters_bias_: torch.nn.parameter.Parameter, |
| 12 | + L_self_modules_output_modules_LayerNorm_parameters_weight_: torch.nn.parameter.Parameter, |
| 13 | + L_self_modules_output_modules_LayerNorm_parameters_bias_: torch.nn.parameter.Parameter, |
| 14 | + ): |
| 15 | + l_stack0_0_ = L_stack0_0_ |
| 16 | + l_self_modules_intermediate_modules_dense_parameters_weight_ = ( |
| 17 | + L_self_modules_intermediate_modules_dense_parameters_weight_ |
| 18 | + ) |
| 19 | + l_self_modules_intermediate_modules_dense_parameters_bias_ = ( |
| 20 | + L_self_modules_intermediate_modules_dense_parameters_bias_ |
| 21 | + ) |
| 22 | + l_self_modules_output_modules_dense_parameters_weight_ = ( |
| 23 | + L_self_modules_output_modules_dense_parameters_weight_ |
| 24 | + ) |
| 25 | + l_self_modules_output_modules_dense_parameters_bias_ = ( |
| 26 | + L_self_modules_output_modules_dense_parameters_bias_ |
| 27 | + ) |
| 28 | + l_self_modules_output_modules_layer_norm_parameters_weight_ = ( |
| 29 | + L_self_modules_output_modules_LayerNorm_parameters_weight_ |
| 30 | + ) |
| 31 | + l_self_modules_output_modules_layer_norm_parameters_bias_ = ( |
| 32 | + L_self_modules_output_modules_LayerNorm_parameters_bias_ |
| 33 | + ) |
| 34 | + hidden_states = torch._C._nn.linear( |
| 35 | + l_stack0_0_, |
| 36 | + l_self_modules_intermediate_modules_dense_parameters_weight_, |
| 37 | + l_self_modules_intermediate_modules_dense_parameters_bias_, |
| 38 | + ) |
| 39 | + l_self_modules_intermediate_modules_dense_parameters_weight_ = ( |
| 40 | + l_self_modules_intermediate_modules_dense_parameters_bias_ |
| 41 | + ) = None |
| 42 | + hidden_states_1 = torch._C._nn.gelu(hidden_states) |
| 43 | + hidden_states = None |
| 44 | + hidden_states_2 = torch._C._nn.linear( |
| 45 | + hidden_states_1, |
| 46 | + l_self_modules_output_modules_dense_parameters_weight_, |
| 47 | + l_self_modules_output_modules_dense_parameters_bias_, |
| 48 | + ) |
| 49 | + hidden_states_1 = ( |
| 50 | + l_self_modules_output_modules_dense_parameters_weight_ |
| 51 | + ) = l_self_modules_output_modules_dense_parameters_bias_ = None |
| 52 | + hidden_states_3 = torch.nn.functional.dropout( |
| 53 | + hidden_states_2, 0.1, False, False |
| 54 | + ) |
| 55 | + hidden_states_2 = None |
| 56 | + add = hidden_states_3 + l_stack0_0_ |
| 57 | + hidden_states_3 = l_stack0_0_ = None |
| 58 | + hidden_states_4 = add.float() |
| 59 | + add = None |
| 60 | + mean = hidden_states_4.mean(-1, keepdim=True) |
| 61 | + sub = hidden_states_4 - mean |
| 62 | + pow_1 = sub.pow(2) |
| 63 | + sub = None |
| 64 | + variance = pow_1.mean(-1, keepdim=True) |
| 65 | + pow_1 = None |
| 66 | + sub_1 = hidden_states_4 - mean |
| 67 | + hidden_states_4 = mean = None |
| 68 | + add_1 = variance + 1e-07 |
| 69 | + variance = None |
| 70 | + sqrt = torch.sqrt(add_1) |
| 71 | + add_1 = None |
| 72 | + hidden_states_5 = sub_1 / sqrt |
| 73 | + sub_1 = sqrt = None |
| 74 | + hidden_states_6 = hidden_states_5.to(torch.float32) |
| 75 | + hidden_states_5 = None |
| 76 | + mul = ( |
| 77 | + l_self_modules_output_modules_layer_norm_parameters_weight_ |
| 78 | + * hidden_states_6 |
| 79 | + ) |
| 80 | + l_self_modules_output_modules_layer_norm_parameters_weight_ = ( |
| 81 | + hidden_states_6 |
| 82 | + ) = None |
| 83 | + y = mul + l_self_modules_output_modules_layer_norm_parameters_bias_ |
| 84 | + mul = l_self_modules_output_modules_layer_norm_parameters_bias_ = None |
| 85 | + return (y,) |
0 commit comments