|
| 1 | +import argparse |
| 2 | +import base64 |
| 3 | +import importlib.util |
| 4 | +import inspect |
| 5 | +import itertools |
| 6 | +import json |
| 7 | +import os |
| 8 | +import subprocess |
| 9 | +import sys |
| 10 | +from pathlib import Path |
| 11 | +from typing import Any, Callable, Dict, List, Tuple |
| 12 | + |
| 13 | +import torch |
| 14 | +import torch.nn as nn |
| 15 | + |
| 16 | +import graph_net |
| 17 | +from graph_net.torch import utils as graph_utils |
| 18 | +from graph_net.torch.rp_expr.longest_rp_expr_parser import LongestRpExprParser |
| 19 | +from graph_net.torch.rp_expr.rp_expr_parser import RpExprParser |
| 20 | + |
| 21 | + |
| 22 | +def encode_config(config: Dict[str, Any]) -> str: |
| 23 | + json_str = json.dumps(config) |
| 24 | + return base64.b64encode(json_str.encode("utf-8")).decode("utf-8") |
| 25 | + |
| 26 | + |
| 27 | +class GraphExtractor: |
| 28 | + def __init__(self): |
| 29 | + self.extract_node = [] |
| 30 | + |
| 31 | + def _extract_operators_from_graph( |
| 32 | + self, gm: nn.Module, example_inputs: List[torch.Tensor] = None |
| 33 | + ) -> List[Dict[str, Any]]: |
| 34 | + operator_list = [] |
| 35 | + named_modules = dict(gm.named_modules()) |
| 36 | + |
| 37 | + for node in gm.graph.nodes: |
| 38 | + if node.op in ("call_method", "call_function", "call_module"): |
| 39 | + target_name = str(node.target) |
| 40 | + |
| 41 | + if node.op == "call_module": |
| 42 | + module_instance = named_modules.get(node.target) |
| 43 | + if module_instance is not None: |
| 44 | + target_name = type(module_instance).__name__ |
| 45 | + elif node.op == "call_function": |
| 46 | + if isinstance(node.target, Callable): |
| 47 | + target_name = node.target.__name__ |
| 48 | + elif node.op == "call_method": |
| 49 | + target_name = str(node.target) |
| 50 | + |
| 51 | + operator_info = { |
| 52 | + "op_type": node.op, |
| 53 | + "target": node.target, |
| 54 | + "name": node.name, |
| 55 | + "target_name": target_name, |
| 56 | + } |
| 57 | + operator_list.append(operator_info) |
| 58 | + |
| 59 | + return operator_list |
| 60 | + |
| 61 | + def extract_compiler(self, gm: torch.fx.GraphModule, inputs: List[torch.Tensor]): |
| 62 | + operator = self._extract_operators_from_graph(gm, inputs) |
| 63 | + self.extract_node = operator |
| 64 | + return gm.forward |
| 65 | + |
| 66 | + |
| 67 | +class ModelLoader: |
| 68 | + def load_class_from_file(self, model_path: str, device: str) -> Any: |
| 69 | + file_path = os.path.join(model_path, "model.py") |
| 70 | + file = Path(file_path).resolve() |
| 71 | + module_name = file.stem |
| 72 | + |
| 73 | + if not os.path.exists(file_path): |
| 74 | + raise FileNotFoundError(f"Model file not found: {file_path}") |
| 75 | + |
| 76 | + with open(file_path, "r", encoding="utf-8") as f: |
| 77 | + model_code = f.read() |
| 78 | + |
| 79 | + model_code = graph_utils.modify_code_by_device(model_code, device) |
| 80 | + |
| 81 | + spec = importlib.util.spec_from_loader(module_name, loader=None) |
| 82 | + module = importlib.util.module_from_spec(spec) |
| 83 | + sys.modules[module_name] = module |
| 84 | + |
| 85 | + compiled_code = compile(model_code, filename=file, mode="exec") |
| 86 | + exec(compiled_code, module.__dict__) |
| 87 | + |
| 88 | + model_class = getattr(module, "GraphModule", None) |
| 89 | + if model_class is None: |
| 90 | + raise ImportError(f"Class 'GraphModule' not found in {file_path}") |
| 91 | + |
| 92 | + return model_class |
| 93 | + |
| 94 | + def get_input_dict(self, model_path: str, device: str) -> Dict[str, torch.Tensor]: |
| 95 | + inputs_params = graph_utils.load_converted_from_text(f"{model_path}") |
| 96 | + params = inputs_params["weight_info"] |
| 97 | + for tensor_meta in params.values(): |
| 98 | + if hasattr(tensor_meta, "device"): |
| 99 | + tensor_meta.device = device |
| 100 | + input_dict = { |
| 101 | + k: graph_utils.replay_tensor(v).to(torch.device(device)) |
| 102 | + for k, v in params.items() |
| 103 | + } |
| 104 | + return input_dict |
| 105 | + |
| 106 | + |
| 107 | +class RangeDecomposerBackend: |
| 108 | + def __init__(self): |
| 109 | + self.window_size = 10 |
| 110 | + self.graph_net_root = Path(graph_net.__file__).parent |
| 111 | + self.workspace_root = Path.cwd() / "naive_decompose_workspace" |
| 112 | + |
| 113 | + def _resolve_token_to_ops( |
| 114 | + self, tid, num_primitives, token_id2primitive_id, symbol_map |
| 115 | + ) -> List[str]: |
| 116 | + if tid < num_primitives: |
| 117 | + return [token_id2primitive_id[tid]] |
| 118 | + if tid in symbol_map: |
| 119 | + sub_tokens = symbol_map[tid].tolist() |
| 120 | + ops = [] |
| 121 | + for t in sub_tokens: |
| 122 | + ops.extend( |
| 123 | + self._resolve_token_to_ops( |
| 124 | + t, num_primitives, token_id2primitive_id, symbol_map |
| 125 | + ) |
| 126 | + ) |
| 127 | + return ops |
| 128 | + return [f"Unknown({tid})"] |
| 129 | + |
| 130 | + def _extract_ops_via_compile( |
| 131 | + self, model_path: str, device: str = "cpu" |
| 132 | + ) -> List[str]: |
| 133 | + loader = ModelLoader() |
| 134 | + print(f"Loading model from {model_path} on {device}...") |
| 135 | + try: |
| 136 | + model_class = loader.load_class_from_file(model_path, device) |
| 137 | + model = model_class().to(torch.device(device)) |
| 138 | + model.eval() |
| 139 | + input_dict = loader.get_input_dict(model_path, device) |
| 140 | + except Exception as e: |
| 141 | + print(f"Error loading/preparing model {model_path}: {e}") |
| 142 | + return [] |
| 143 | + |
| 144 | + extractor = GraphExtractor() |
| 145 | + compiled_model = torch.compile(model, backend=extractor.extract_compiler) |
| 146 | + |
| 147 | + with torch.no_grad(): |
| 148 | + compiled_model(**input_dict) |
| 149 | + |
| 150 | + ops_info = extractor.extract_node |
| 151 | + if not ops_info: |
| 152 | + print(f"Warning: No operators extracted from {model_path}.") |
| 153 | + return [] |
| 154 | + return [op["target_name"] for op in ops_info] |
| 155 | + |
| 156 | + def _calculate_token_lengths( |
| 157 | + self, rp_expr, num_primitives, symbol_map |
| 158 | + ) -> Dict[int, int]: |
| 159 | + token2len = {} |
| 160 | + |
| 161 | + def get_len(tid): |
| 162 | + if tid in token2len: |
| 163 | + return token2len[tid] |
| 164 | + if tid < num_primitives: |
| 165 | + token2len[tid] = 1 |
| 166 | + return 1 |
| 167 | + if tid in symbol_map: |
| 168 | + sub_tokens = symbol_map[tid].tolist() |
| 169 | + length = sum(get_len(t) for t in sub_tokens) |
| 170 | + token2len[tid] = length |
| 171 | + return length |
| 172 | + token2len[tid] = 1 |
| 173 | + return 1 |
| 174 | + |
| 175 | + for sym_id in rp_expr.symbol_token_ids: |
| 176 | + get_len(sym_id) |
| 177 | + return token2len |
| 178 | + |
| 179 | + def _analyze_and_get_splits(self, args) -> Dict[str, Dict]: |
| 180 | + input_file = Path(args.model_path) |
| 181 | + if not input_file.exists(): |
| 182 | + print(f"Error: Input file {input_file} does not exist.") |
| 183 | + return {} |
| 184 | + |
| 185 | + with open(input_file, "r") as f: |
| 186 | + model_paths = [ |
| 187 | + Path(line.strip()) |
| 188 | + for line in f |
| 189 | + if line.strip() and not line.startswith("#") |
| 190 | + ] |
| 191 | + |
| 192 | + if not model_paths: |
| 193 | + print("No valid model paths found.") |
| 194 | + return {} |
| 195 | + |
| 196 | + inputs_seqs = [] |
| 197 | + valid_models = [] |
| 198 | + |
| 199 | + for p in model_paths: |
| 200 | + seq = self._extract_ops_via_compile(p, args.device) |
| 201 | + if seq: |
| 202 | + inputs_seqs.append(seq) |
| 203 | + valid_models.append((p.name, p)) |
| 204 | + |
| 205 | + if not inputs_seqs: |
| 206 | + return {} |
| 207 | + |
| 208 | + rp_parser = RpExprParser( |
| 209 | + window_size=self.window_size, fold_policy="default", fold_times=0 |
| 210 | + ) |
| 211 | + rp_expr, token_id2primitive_id = rp_parser(inputs_seqs) |
| 212 | + rp_expr.try_unwrap_body_of_sole_symbol_token() |
| 213 | + rp_expr.try_recursive_inline_symbol_sole_used(token_id2primitive_id) |
| 214 | + num_primitives = len(token_id2primitive_id) |
| 215 | + symbol_map = dict(zip(rp_expr.symbol_token_ids, rp_expr.symbol_token_tensors)) |
| 216 | + token2len = self._calculate_token_lengths(rp_expr, num_primitives, symbol_map) |
| 217 | + |
| 218 | + results = {} |
| 219 | + |
| 220 | + for i, (model_name, original_path) in enumerate(valid_models): |
| 221 | + if i >= len(rp_expr.body_rp_expr): |
| 222 | + break |
| 223 | + |
| 224 | + target_body_tensor = rp_expr.body_rp_expr[i] |
| 225 | + seq_tokens = target_body_tensor.tolist() |
| 226 | + |
| 227 | + full_model_ops = [] |
| 228 | + for t in seq_tokens: |
| 229 | + full_model_ops.extend( |
| 230 | + self._resolve_token_to_ops( |
| 231 | + t, num_primitives, token_id2primitive_id, symbol_map |
| 232 | + ) |
| 233 | + ) |
| 234 | + |
| 235 | + current_idx = 0 |
| 236 | + split_points_set = set() |
| 237 | + total_len = sum(token2len.get(t, 1) for t in seq_tokens) |
| 238 | + |
| 239 | + for token_id in seq_tokens: |
| 240 | + length = token2len.get(token_id, 1) |
| 241 | + is_pattern = token_id >= num_primitives |
| 242 | + |
| 243 | + if is_pattern: |
| 244 | + if current_idx > 0: |
| 245 | + split_points_set.add(current_idx) |
| 246 | + end_idx = current_idx + length |
| 247 | + if end_idx < total_len: |
| 248 | + split_points_set.add(end_idx) |
| 249 | + |
| 250 | + current_idx += length |
| 251 | + |
| 252 | + sorted_splits = sorted(list(split_points_set)) |
| 253 | + |
| 254 | + self._print_analysis( |
| 255 | + model_name, original_path, sorted_splits, total_len, full_model_ops |
| 256 | + ) |
| 257 | + |
| 258 | + results[model_name] = { |
| 259 | + "path": str(original_path), |
| 260 | + "split_points": sorted_splits, |
| 261 | + } |
| 262 | + |
| 263 | + return results |
| 264 | + |
| 265 | + def _print_analysis(self, name, path, splits, total_len, full_ops): |
| 266 | + print("=" * 60) |
| 267 | + print(f"Model: {name}") |
| 268 | + print(f"Path: {path}") |
| 269 | + print(f"Splits: {splits}") |
| 270 | + print("-" * 60) |
| 271 | + |
| 272 | + last_split = 0 |
| 273 | + for split in splits + [total_len]: |
| 274 | + segment_len = split - last_split |
| 275 | + |
| 276 | + start_safe = min(last_split, len(full_ops)) |
| 277 | + end_safe = min(split, len(full_ops)) |
| 278 | + segment_ops = full_ops[start_safe:end_safe] |
| 279 | + |
| 280 | + ops_display = str(segment_ops) |
| 281 | + if len(segment_ops) > 5: |
| 282 | + ops_display = f"[{segment_ops[0]}, ..., {segment_ops[-1]}]" |
| 283 | + |
| 284 | + print( |
| 285 | + f" Range [{last_split:3d}, {split:3d}), Len: {segment_len:3d} | Ops: {ops_display}" |
| 286 | + ) |
| 287 | + last_split = split |
| 288 | + print("\n") |
| 289 | + |
| 290 | + def __call__(self, args): |
| 291 | + model_data_map = self._analyze_and_get_splits(args) |
| 292 | + |
| 293 | + for model_name, info in model_data_map.items(): |
| 294 | + model_path = info["path"] |
| 295 | + split_points = info["split_points"] |
| 296 | + |
| 297 | + model_output_dir = self.workspace_root / f"{model_name}_decomposed" |
| 298 | + model_output_dir.mkdir(parents=True, exist_ok=True) |
| 299 | + |
| 300 | + config_dict = { |
| 301 | + "decorator_path": str(self.graph_net_root / "torch/extractor.py"), |
| 302 | + "decorator_config": { |
| 303 | + "name": model_name, |
| 304 | + "custom_extractor_path": str( |
| 305 | + self.graph_net_root / "torch/naive_graph_decomposer.py" |
| 306 | + ), |
| 307 | + "custom_extractor_config": { |
| 308 | + "output_dir": str(model_output_dir), |
| 309 | + "split_positions": split_points, |
| 310 | + "group_head_and_tail": True, |
| 311 | + "filter_path": str( |
| 312 | + self.graph_net_root / "torch/naive_subgraph_filter.py" |
| 313 | + ), |
| 314 | + "filter_config": {}, |
| 315 | + }, |
| 316 | + }, |
| 317 | + } |
| 318 | + |
| 319 | + encoded_config = encode_config(config_dict) |
| 320 | + |
| 321 | + cmd = [ |
| 322 | + sys.executable, |
| 323 | + "-m", |
| 324 | + "graph_net.torch.run_model", |
| 325 | + "--model-path", |
| 326 | + model_path, |
| 327 | + "--decorator-config", |
| 328 | + encoded_config, |
| 329 | + ] |
| 330 | + |
| 331 | + try: |
| 332 | + subprocess.run(cmd, check=True) |
| 333 | + print(f" [Success] Saved to {model_output_dir}") |
| 334 | + except subprocess.CalledProcessError as e: |
| 335 | + print(f" [Error] Process failed: {e}") |
| 336 | + except Exception as e: |
| 337 | + print(f" [Error] Unexpected: {e}") |
0 commit comments