|
| 1 | +import paddle |
| 2 | + |
| 3 | + |
| 4 | +class GraphModule(paddle.nn.Layer): |
| 5 | + def __init__(self): |
| 6 | + super().__init__() |
| 7 | + |
| 8 | + def forward(self, parameter_0, parameter_1, parameter_2, parameter_3, data_0): |
| 9 | + # pd_op.cast: (-1x96x2xf32) <- (-1x96x2xf32) |
| 10 | + cast_0 = paddle._C_ops.cast(data_0, paddle.float32) |
| 11 | + del data_0 |
| 12 | + |
| 13 | + # pd_op.assign: (-1x96x2xf32) <- (-1x96x2xf32) |
| 14 | + assign_0 = cast_0 |
| 15 | + |
| 16 | + # pd_op.full_int_array: (1xi64) <- () |
| 17 | + full_int_array_0 = [0] |
| 18 | + |
| 19 | + # pd_op.full_int_array: (1xi64) <- () |
| 20 | + full_int_array_1 = [1] |
| 21 | + |
| 22 | + # pd_op.slice: (-1x1x2xf32) <- (-1x96x2xf32, 1xi64, 1xi64) |
| 23 | + slice_0 = paddle._C_ops.slice( |
| 24 | + cast_0, [1], full_int_array_0, full_int_array_1, [1], [] |
| 25 | + ) |
| 26 | + del full_int_array_0, full_int_array_1 |
| 27 | + |
| 28 | + # pd_op.full_int_array: (3xi64) <- () |
| 29 | + full_int_array_2 = [1, 12, 1] |
| 30 | + |
| 31 | + # pd_op.tile: (-1x12x2xf32) <- (-1x1x2xf32, 3xi64) |
| 32 | + tile_0 = paddle._C_ops.tile(slice_0, full_int_array_2) |
| 33 | + del slice_0 |
| 34 | + |
| 35 | + # pd_op.full_int_array: (1xi64) <- () |
| 36 | + full_int_array_3 = [-1] |
| 37 | + |
| 38 | + # pd_op.full_int_array: (1xi64) <- () |
| 39 | + full_int_array_4 = [2147483647] |
| 40 | + |
| 41 | + # pd_op.slice: (-1x1x2xf32) <- (-1x96x2xf32, 1xi64, 1xi64) |
| 42 | + slice_1 = paddle._C_ops.slice( |
| 43 | + cast_0, [1], full_int_array_3, full_int_array_4, [1], [] |
| 44 | + ) |
| 45 | + del full_int_array_3, full_int_array_4 |
| 46 | + |
| 47 | + # pd_op.tile: (-1x12x2xf32) <- (-1x1x2xf32, 3xi64) |
| 48 | + tile_1 = paddle._C_ops.tile(slice_1, full_int_array_2) |
| 49 | + del full_int_array_2, slice_1 |
| 50 | + |
| 51 | + # pd_op.full: (1xi32) <- () |
| 52 | + full_0 = paddle._C_ops.full( |
| 53 | + [1], float("1"), paddle.int32, paddle.core.CPUPlace() |
| 54 | + ) |
| 55 | + |
| 56 | + # builtin.combine: ([-1x12x2xf32, -1x96x2xf32, -1x12x2xf32]) <- (-1x12x2xf32, -1x96x2xf32, -1x12x2xf32) |
| 57 | + combine_0 = [tile_0, cast_0, tile_1] |
| 58 | + del tile_0, tile_1 |
| 59 | + |
| 60 | + # pd_op.concat: (-1x120x2xf32) <- ([-1x12x2xf32, -1x96x2xf32, -1x12x2xf32], 1xi32) |
| 61 | + concat_0 = paddle._C_ops.concat(combine_0, full_0) |
| 62 | + del combine_0, full_0 |
| 63 | + |
| 64 | + # pd_op.transpose: (-1x2x120xf32) <- (-1x120x2xf32) |
| 65 | + transpose_1 = paddle._C_ops.transpose(concat_0, [0, 2, 1]) |
| 66 | + del concat_0 |
| 67 | + |
| 68 | + # pd_op.full_int_array: (1xi64) <- () |
| 69 | + full_int_array_5 = [2] |
| 70 | + |
| 71 | + # pd_op.unsqueeze: (-1x2x1x120xf32) <- (-1x2x120xf32, 1xi64) |
| 72 | + unsqueeze_0 = paddle._C_ops.unsqueeze(transpose_1, full_int_array_5) |
| 73 | + del transpose_1 |
| 74 | + |
| 75 | + # pd_op.full_int_array: (2xi64) <- () |
| 76 | + full_int_array_6 = [1, 25] |
| 77 | + |
| 78 | + # pd_op.pool2d: (-1x2x1x96xf32) <- (-1x2x1x120xf32, 2xi64) |
| 79 | + pool2d_0 = paddle._C_ops.pool2d( |
| 80 | + unsqueeze_0, |
| 81 | + full_int_array_6, |
| 82 | + [1, 1], |
| 83 | + [0, 0], |
| 84 | + False, |
| 85 | + True, |
| 86 | + "NCHW", |
| 87 | + "avg", |
| 88 | + False, |
| 89 | + False, |
| 90 | + "EXPLICIT", |
| 91 | + ) |
| 92 | + del full_int_array_6, unsqueeze_0 |
| 93 | + |
| 94 | + # pd_op.squeeze: (-1x2x96xf32) <- (-1x2x1x96xf32, 1xi64) |
| 95 | + squeeze_0 = paddle._C_ops.squeeze(pool2d_0, full_int_array_5) |
| 96 | + del full_int_array_5, pool2d_0 |
| 97 | + |
| 98 | + # pd_op.transpose: (-1x96x2xf32) <- (-1x2x96xf32) |
| 99 | + transpose_2 = paddle._C_ops.transpose(squeeze_0, [0, 2, 1]) |
| 100 | + del squeeze_0 |
| 101 | + |
| 102 | + # pd_op.subtract: (-1x96x2xf32) <- (-1x96x2xf32, -1x96x2xf32) |
| 103 | + subtract_0 = paddle._C_ops.subtract(cast_0, transpose_2) |
| 104 | + del cast_0 |
| 105 | + |
| 106 | + # pd_op.transpose: (-1x2x96xf32) <- (-1x96x2xf32) |
| 107 | + transpose_3 = paddle._C_ops.transpose(subtract_0, [0, 2, 1]) |
| 108 | + del subtract_0 |
| 109 | + |
| 110 | + # pd_op.transpose: (-1x2x96xf32) <- (-1x96x2xf32) |
| 111 | + transpose_4 = paddle._C_ops.transpose(transpose_2, [0, 2, 1]) |
| 112 | + del transpose_2 |
| 113 | + |
| 114 | + # pd_op.matmul: (-1x2x96xf32) <- (-1x2x96xf32, 96x96xf32) |
| 115 | + matmul_0 = paddle._C_ops.matmul(transpose_3, parameter_3, False, False) |
| 116 | + del parameter_3, transpose_3 |
| 117 | + |
| 118 | + # pd_op.add: (-1x2x96xf32) <- (-1x2x96xf32, 96xf32) |
| 119 | + add_0 = paddle._C_ops.add(matmul_0, parameter_2) |
| 120 | + del matmul_0, parameter_2 |
| 121 | + |
| 122 | + # pd_op.matmul: (-1x2x96xf32) <- (-1x2x96xf32, 96x96xf32) |
| 123 | + matmul_1 = paddle._C_ops.matmul(transpose_4, parameter_1, False, False) |
| 124 | + del parameter_1, transpose_4 |
| 125 | + |
| 126 | + # pd_op.add: (-1x2x96xf32) <- (-1x2x96xf32, 96xf32) |
| 127 | + add_1 = paddle._C_ops.add(matmul_1, parameter_0) |
| 128 | + del matmul_1, parameter_0 |
| 129 | + |
| 130 | + # pd_op.add: (-1x2x96xf32) <- (-1x2x96xf32, -1x2x96xf32) |
| 131 | + add_2 = paddle._C_ops.add(add_0, add_1) |
| 132 | + del add_0, add_1 |
| 133 | + |
| 134 | + # pd_op.transpose: (-1x96x2xf32) <- (-1x2x96xf32) |
| 135 | + transpose_0 = paddle._C_ops.transpose(add_2, [0, 2, 1]) |
| 136 | + del add_2, assign_0 |
| 137 | + |
| 138 | + return transpose_0 |
0 commit comments