|
| 1 | +def get_auto_model_and_inputs(model_name, text, dtype): |
| 2 | + from paddlenlp.transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
| 3 | + |
| 4 | + config = AutoConfig.from_pretrained(model_name) |
| 5 | + model = AutoModelForCausalLM.from_config(config, dtype=dtype) |
| 6 | + model = model.eval() |
| 7 | + |
| 8 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 9 | + tokenizer.pad_token = tokenizer.eos_token |
| 10 | + inputs = tokenizer( |
| 11 | + text, return_tensors="pd", padding=True, truncation=True, max_length=2048 |
| 12 | + ) |
| 13 | + return model, inputs |
| 14 | + |
| 15 | + |
| 16 | +def get_bert_model_and_inputs(model_name, text, dtype): |
| 17 | + from paddlenlp.transformers import BertModel, BertTokenizer |
| 18 | + |
| 19 | + model = BertModel.from_pretrained(model_name) |
| 20 | + model.eval() |
| 21 | + |
| 22 | + tokenizer = BertTokenizer.from_pretrained(model_name) |
| 23 | + inputs = tokenizer(text, return_tensors="pd") |
| 24 | + return model, inputs |
| 25 | + |
| 26 | + |
| 27 | +def get_convbert_model_and_inputs(model_name, text, dtype): |
| 28 | + from paddlenlp.transformers import ConvBertModel as ModelClass |
| 29 | + from paddlenlp.transformers import ConvBertTokenizer as TokenizerClass |
| 30 | + |
| 31 | + model = ModelClass.from_pretrained(model_name) |
| 32 | + model.eval() |
| 33 | + |
| 34 | + tokenizer = TokenizerClass.from_pretrained(model_name) |
| 35 | + inputs = tokenizer(text, return_tensors="pd") |
| 36 | + return model, inputs |
| 37 | + |
| 38 | + |
| 39 | +def get_ernie_model_and_inputs(model_name, text, dtype): |
| 40 | + from paddlenlp.transformers import ErnieModel, ErnieTokenizer |
| 41 | + |
| 42 | + model = ErnieModel.from_pretrained(model_name) |
| 43 | + tokenizer = ErnieTokenizer.from_pretrained(model_name) |
| 44 | + inputs = tokenizer(text, return_tensors="pd") |
| 45 | + return model, inputs |
| 46 | + |
| 47 | + |
| 48 | +def get_ernie_m_model_and_inputs(model_name, text, dtype): |
| 49 | + from paddlenlp.transformers import ErnieMModel as ModelClass |
| 50 | + from paddlenlp.transformers import ErnieMTokenizer as TokenizerClass |
| 51 | + |
| 52 | + model = ModelClass.from_pretrained(model_name) |
| 53 | + model.eval() |
| 54 | + |
| 55 | + tokenizer = TokenizerClass.from_pretrained(model_name) |
| 56 | + inputs = tokenizer(text, return_tensors="pd") |
| 57 | + return model, inputs |
| 58 | + |
| 59 | + |
| 60 | +def get_gpt_model_and_inputs(model_name, text, dtype): |
| 61 | + from paddlenlp.transformers import GPTModel, GPTTokenizer |
| 62 | + |
| 63 | + model = GPTModel.from_pretrained(model_name) |
| 64 | + model.eval() |
| 65 | + |
| 66 | + tokenizer = GPTTokenizer.from_pretrained(model_name) |
| 67 | + inputs = tokenizer(text, return_tensors="pd") |
| 68 | + inputs.pop("token_type_ids") |
| 69 | + return model, inputs |
| 70 | + |
| 71 | + |
| 72 | +def get_nezha_model_and_inputs(model_name, text, dtype): |
| 73 | + from paddlenlp.transformers import NeZhaModel as ModelClass |
| 74 | + from paddlenlp.transformers import NeZhaTokenizer as TokenizerClass |
| 75 | + |
| 76 | + model = ModelClass.from_pretrained(model_name) |
| 77 | + tokenizer = TokenizerClass.from_pretrained(model_name) |
| 78 | + inputs = tokenizer(text, return_tensors="pd") |
| 79 | + return model, inputs |
| 80 | + |
| 81 | + |
| 82 | +def get_ppminilm_model_and_inputs(model_name, text, dtype): |
| 83 | + from paddlenlp.transformers import PPMiniLMModel as ModelClass |
| 84 | + from paddlenlp.transformers import PPMiniLMTokenizer as TokenizerClass |
| 85 | + |
| 86 | + model = ModelClass.from_pretrained(model_name) |
| 87 | + tokenizer = TokenizerClass.from_pretrained(model_name) |
| 88 | + inputs = tokenizer(text, return_tensors="pd") |
| 89 | + return model, inputs |
| 90 | + |
| 91 | + |
| 92 | +def get_reformer_model_and_inputs(model_name, text, dtype): |
| 93 | + from paddlenlp.transformers import RoFormerModel as ModelClass |
| 94 | + from paddlenlp.transformers import RoFormerTokenizer as TokenizerClass |
| 95 | + |
| 96 | + model = ModelClass.from_pretrained(model_name) |
| 97 | + tokenizer = TokenizerClass.from_pretrained(model_name) |
| 98 | + inputs = tokenizer(text, return_tensors="pd") |
| 99 | + return model, inputs |
| 100 | + |
| 101 | + |
| 102 | +def get_skep_model_and_inputs(model_name, text, dtype): |
| 103 | + from paddlenlp.transformers import SkepModel as ModelClass |
| 104 | + from paddlenlp.transformers import SkepTokenizer as TokenizerClass |
| 105 | + |
| 106 | + model = ModelClass.from_pretrained(model_name) |
| 107 | + tokenizer = TokenizerClass.from_pretrained(model_name) |
| 108 | + inputs = tokenizer(text, return_tensors="pd") |
| 109 | + return model, inputs |
0 commit comments