Skip to content

Commit ef31995

Browse files
authored
Update README_cn (#142)
* Update README.md * update
1 parent bf6920a commit ef31995

File tree

2 files changed

+15
-6
lines changed

2 files changed

+15
-6
lines changed

README.md

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,16 @@
11
# GraphNet ![](https://img.shields.io/badge/version-v0.1-brightgreen) ![](https://img.shields.io/github/issues/PaddlePaddle/GraphNet?label=open%20issues) [![](https://img.shields.io/badge/Contribute%20to%20GraphNet-blue)](https://github.com/PaddlePaddle/GraphNet/issues/98)
22

33

4-
**GraphNet** is a large-scale dataset of deep learning **computation graphs**, designed to serve as a standard benchmark and training corpus for **AI-driven tensor compiler optimization**. It contains massive, diverse graphs extracted from state-of-the-art models, enabling consistent comparison of optimization effectiveness across compiler passes, frameworks, and hardware platforms.
4+
**GraphNet** is a large-scale dataset of deep learning **computation graphs**, designed to serve as a standard benchmark and training corpus for **AI-driven tensor compiler optimization**. It contains diverse graphs extracted from state-of-the-art models, enabling effective evaluation of compiler pass optimizations across frameworks and hardware platforms.
5+
56

67
With GraphNet, users can:
78
1. Quickly benchmark the optimization performance of various compiler strategies.
89
2. Easily conduct regression tests on existing compilers.
910
3. Train AI‑for‑Systems models to automatically generate compiler optimization passes.
1011

11-
**Vision**: We aim to enable cross-hardware portability of compiler optimizations by allowing models to learn and transfer optimization strategies. It will greatly reduce the manual effort required to develop efficient operator implementations.
12+
**Vision**: We aim to achieve cross-hardware portability of compiler optimizations by allowing models to learn and transfer optimization strategies. It will significantly reduce the manual effort required to develop efficient operator implementations.
13+
1214

1315

1416

@@ -24,7 +26,7 @@ With GraphNet, users can:
2426

2527

2628
## ⚡ Quick Start
27-
29+
For full implementation details, please refer to the [Co-Creation Tutorial](https://github.com/PaddlePaddle/GraphNet/blob/develop/CONTRIBUTE_TUTORIAL.md#co-creation-tutorial).
2830
### Benchmark your compiler on the model:
2931

3032
**graph_net.torch.test_compiler**
@@ -89,7 +91,8 @@ python -m graph_net.config --global \
8991
--username "your-name" \
9092
--email "your-email"
9193
```
92-
Once you have packaged these extracted computation graphs, submit them to the GraphNet community via the following group chats.
94+
Once you have packaged these extracted computation graphs, submit them to the GraphNet community via the following group chats. [Discord](https://discord.gg/Pp5FKW92) is also available.
95+
9396

9497
<div align="center">
9598
<table>
@@ -104,6 +107,7 @@ Once you have packaged these extracted computation graphs, submit them to the Gr
104107
</table>
105108
</div>
106109

110+
107111
## License
108112
This project is released under the [MIT License](LICENSE).
109113

README_cn.md

Lines changed: 7 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,15 @@
1-
# GraphNet
1+
# GraphNet ![](https://img.shields.io/badge/version-v0.1-brightgreen) ![](https://img.shields.io/github/issues/PaddlePaddle/GraphNet?label=open%20issues) [![](https://img.shields.io/badge/开源活动-blue)](https://github.com/PaddlePaddle/GraphNet/issues/98)
22

3-
GraphNet —— 一个面向编译器开发的大规模数据集,旨在为研究者提供一个统一、开放的实验平台。其中包含大量来自真实模型的计算图,方便评估不同编译器Pass的优化效果
3+
**GraphNet** 是一个面向AI 编译器开发的大规模**计算图数据集**,旨在为研究者提供统一、开放的实验平台。它收录了大量深度学习模型的计算图,方便评估不同编译器 Pass 的优化效果,支持跨框架、跨平台的性能比较
44

55
通过 GraphNet,用户可以:
66

77
1. 快速测试不同编译器策略的通用优化效果
88
2. 方便已有编译器做回归测试
99
3. 训练AI-for-system模型以自动生成编译器优化Pass
1010

11+
**目标**:我们致力于实现编译优化策略在不同硬件间的可移植性,使大模型能够学习并迁移这些策略,从而大幅降低高效算子开发的成本。
12+
1113
### 数据集构建约束:
1214

1315
1. 动态图能正常运行
@@ -19,7 +21,10 @@ GraphNet —— 一个面向编译器开发的大规模数据集,旨在为研
1921
7. 若存在自定义算子,则自定义算子的代码必须能被完整访问
2022
8. 可通过统一方式配置计算图在不同芯片上运行
2123

24+
25+
2226
## 快速开始
27+
详细的实现细节请参见 [共创者指引](https://github.com/PaddlePaddle/GraphNet/blob/develop/CONTRIBUTE_TUTORIAL_cn.md#共创者指引)
2328
### 测试编译器性能
2429
**graph_net.torch.test_compiler**
2530
```

0 commit comments

Comments
 (0)