Skip to content

【all-mpnet-base-v2】'dict' object has no attribute 'size' #122

@xiaoyewww

Description

@xiaoyewww

提取all-mpnet-base-v2计算图报错。

抽取脚本如下:

import torch
from graph_net.torch.extractor import extract
from transformers import AutoTokenizer, AutoModel


def run_model(name: str, device_str: str) -> None:
    """
    对指定模型执行计算图抽取流程并导出结果。

    Args:
        name (str): 模型名称(例如 'resnet50'、'vit_b_16'、'bert-base-uncased' 等)。
        device_str (str): 运行设备标识('cpu' 或 'cuda:0' 等)。
    """
    device = torch.device(device_str)
    print(f"\nTesting model: {name} on {device_str}")

    # # 1. 加载模型权重
    # pass

    # 2. 实例化模型
    try:
        model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
    except Exception as e:
        print(f"[FAIL] {name}: instantiate model error - {e}")
        return

    import inspect
    print(inspect.signature(model.forward))

    # 3. 构造输入张量
    tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
    sentences = ['This is an example sentence', 'Each sentence is converted']
    inputs = tokenizer(
        sentences,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=512,
    )
    input_data = {key: val.to(device) for key, val in inputs.items()}

    # 4. 包装并抽取计算图
    model = model.to(device).eval()
    # output = model(**input_data)
    # print(f"output: {output}")
    wrapped = extract(name=name)(model).eval()
    try:
        with torch.no_grad():
            wrapped(input_data)
        print(f"[OK] {name}")
    except Exception as e:
        print(f"[FAIL] {name}: extract error - {e}")


run_model('sentence-transformers/all-mpnet-base-v2', 'cpu')

报错信息:

Testing model: sentence-transformers/all-mpnet-base-v2 on cpu
(input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs) -> Union[tuple[torch.Tensor], transformers.modeling_outputs.BaseModelOutputWithPooling]
[FAIL] sentence-transformers/all-mpnet-base-v2: extract error - 'dict' object has no attribute 'size'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions