|
| 1 | +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#pragma once |
| 16 | + |
| 17 | +#include <vector> |
| 18 | +#include "paddle/fluid/framework/tensor.h" |
| 19 | + |
| 20 | +namespace paddle { |
| 21 | +namespace operators { |
| 22 | +namespace math { |
| 23 | + |
| 24 | +/** |
| 25 | + * The most common im2col algorithm. |
| 26 | + * Support dilation, stride and padding. |
| 27 | + */ |
| 28 | +template <typename T> |
| 29 | +inline void im2col_common(const framework::Tensor& im, |
| 30 | + const std::vector<int>& dilation, |
| 31 | + const std::vector<int>& stride, |
| 32 | + const std::vector<int>& padding, |
| 33 | + framework::Tensor* col) { |
| 34 | + int im_channels = im.dims()[0]; |
| 35 | + int im_height = im.dims()[1]; |
| 36 | + int im_width = im.dims()[2]; |
| 37 | + int filter_height = col->dims()[1]; |
| 38 | + int filter_width = col->dims()[2]; |
| 39 | + int output_height = col->dims()[3]; |
| 40 | + int output_width = col->dims()[4]; |
| 41 | + int channels_col = im_channels * filter_height * filter_width; |
| 42 | + |
| 43 | + const T* im_data = im.data<T>(); |
| 44 | + T* col_data = col->data<T>(); |
| 45 | + for (int c = 0; c < channels_col; ++c) { |
| 46 | + int w_offset = c % filter_width; |
| 47 | + int h_offset = (c / filter_width) % filter_height; |
| 48 | + int c_im = c / (filter_width * filter_height); |
| 49 | + for (int h = 0; h < output_height; ++h) { |
| 50 | + int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; |
| 51 | + for (int w = 0; w < output_width; ++w) { |
| 52 | + int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1]; |
| 53 | + int col_idx = (c * output_height + h) * output_width + w; |
| 54 | + int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx; |
| 55 | + col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height || |
| 56 | + im_col_idx < 0 || im_col_idx >= im_width) |
| 57 | + ? static_cast<T>(0) |
| 58 | + : im_data[im_idx]; |
| 59 | + } |
| 60 | + } |
| 61 | + } |
| 62 | +} |
| 63 | + |
| 64 | +/** |
| 65 | + * im2col algorithm with strides == 1, dilations == 1, paddings == 0 |
| 66 | + */ |
| 67 | +template <typename T> |
| 68 | +inline void im2col_sh1sw1dh1dw1ph0pw0(const framework::Tensor& im, |
| 69 | + framework::Tensor* col) { |
| 70 | + int im_channels = im.dims()[0]; |
| 71 | + int im_height = im.dims()[1]; |
| 72 | + int im_width = im.dims()[2]; |
| 73 | + int filter_height = col->dims()[1]; |
| 74 | + int filter_width = col->dims()[2]; |
| 75 | + int output_height = col->dims()[3]; |
| 76 | + int output_width = col->dims()[4]; |
| 77 | + |
| 78 | + const T* im_data = im.data<T>(); |
| 79 | + T* col_data = col->data<T>(); |
| 80 | + int col_matrix_width = output_width * output_height; |
| 81 | + int im_size = im_height * im_width; |
| 82 | + size_t copy_size = sizeof(T) * output_width; |
| 83 | + const T* im_data_oh = im_data; |
| 84 | + T* dst_data_oh = col_data; |
| 85 | + for (int oh = 0; oh < output_height; ++oh) { |
| 86 | + const T* src_data_ic = im_data_oh; |
| 87 | + T* dst_data = dst_data_oh; |
| 88 | + for (int ic = 0; ic < im_channels; ++ic) { |
| 89 | + const T* src_data = src_data_ic; |
| 90 | + for (int kh = 0; kh < filter_height; ++kh) { |
| 91 | + for (int kw = 0; kw < filter_width; ++kw) { |
| 92 | + std::memcpy(dst_data, src_data + kw, copy_size); |
| 93 | + dst_data = dst_data + col_matrix_width; |
| 94 | + } |
| 95 | + src_data = src_data + im_width; |
| 96 | + } |
| 97 | + src_data_ic = src_data_ic + im_size; |
| 98 | + } |
| 99 | + im_data_oh = im_data_oh + im_width; |
| 100 | + dst_data_oh = dst_data_oh + output_width; |
| 101 | + } |
| 102 | +} |
| 103 | + |
| 104 | +/** |
| 105 | + * im2col algorithm with strides == 1, dilations == 1, paddings == 1 |
| 106 | + * and filter_width == 1 have a special implementation |
| 107 | + */ |
| 108 | +template <typename T> |
| 109 | +inline void im2col_sh1sw1dh1dw1ph1pw1(const framework::Tensor& im, |
| 110 | + framework::Tensor* col) { |
| 111 | + int im_channels = im.dims()[0]; |
| 112 | + int im_height = im.dims()[1]; |
| 113 | + int im_width = im.dims()[2]; |
| 114 | + int filter_height = col->dims()[1]; |
| 115 | + int filter_width = col->dims()[2]; |
| 116 | + int output_height = col->dims()[3]; |
| 117 | + int output_width = col->dims()[4]; |
| 118 | + |
| 119 | + constexpr int plh = 1; |
| 120 | + constexpr int prh = 1; |
| 121 | + constexpr int plw = 1; |
| 122 | + constexpr int prw = 1; |
| 123 | + |
| 124 | + const T* im_data = im.data<T>(); |
| 125 | + T* col_data = col->data<T>(); |
| 126 | + int im_size = im_height * im_width; |
| 127 | + int col_matrix_width = output_width * output_height; |
| 128 | + int col_block_fh = filter_width * col_matrix_width; // fw*oh*ow |
| 129 | + int col_block_ic = filter_height * col_block_fh; // fh*fw*oh*ow |
| 130 | + |
| 131 | + // fill height padding |
| 132 | + { |
| 133 | + size_t copy_size = sizeof(T) * output_width; |
| 134 | + T* col_start_l = col_data; |
| 135 | + T* col_start_r = col_data + (filter_height - 1) * col_block_fh + |
| 136 | + col_matrix_width - output_width; |
| 137 | + for (int ic = 0; ic < im_channels; ++ic) { |
| 138 | + T* dst_data_l = col_start_l; |
| 139 | + T* dst_data_r = col_start_r; |
| 140 | + for (int kw = 0; kw < filter_width; ++kw) { |
| 141 | + std::memset(dst_data_l, 0, copy_size); |
| 142 | + std::memset(dst_data_r, 0, copy_size); |
| 143 | + dst_data_l = dst_data_l + col_matrix_width; |
| 144 | + dst_data_r = dst_data_r + col_matrix_width; |
| 145 | + } |
| 146 | + col_start_l = col_start_l + col_block_ic; |
| 147 | + col_start_r = col_start_r + col_block_ic; |
| 148 | + } |
| 149 | + } |
| 150 | + |
| 151 | + auto pad = static_cast<T>(0); |
| 152 | + if (filter_width == 1) { |
| 153 | + // fill width padding |
| 154 | + T* dst_data_ic = col_data; |
| 155 | + for (int ic = 0; ic < im_channels; ++ic) { |
| 156 | + T* dst_data_kh = dst_data_ic; |
| 157 | + for (int kh = 0; kh < filter_height; ++kh) { |
| 158 | + T* dst_data = dst_data_kh; |
| 159 | + for (int oh = 0; oh < output_height; ++oh) { |
| 160 | + *dst_data = pad; |
| 161 | + dst_data = dst_data + output_width - 1; |
| 162 | + *dst_data = pad; |
| 163 | + ++dst_data; |
| 164 | + } |
| 165 | + dst_data_kh = dst_data_kh + col_block_fh; |
| 166 | + } |
| 167 | + dst_data_ic = dst_data_ic + col_block_ic; |
| 168 | + } |
| 169 | + // fill core |
| 170 | + size_t copy_size = sizeof(T) * (output_width - plw - prw); |
| 171 | + for (int oh = 0; oh < output_height; ++oh) { |
| 172 | + const T* im_data_start = |
| 173 | + im_data + (oh - plh > 0 ? oh - plh : 0) * im_width; |
| 174 | + T* dst_data = col_data + oh * output_width; |
| 175 | + for (int ic = 0; ic < im_channels; ++ic) { |
| 176 | + const T* src_data = im_data_start + ic * im_size; |
| 177 | + for (int kh = 0; kh < filter_height; ++kh) { |
| 178 | + if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) && |
| 179 | + kh > (filter_height - prh - 1))) { |
| 180 | + dst_data = dst_data + col_matrix_width; |
| 181 | + continue; |
| 182 | + } |
| 183 | + std::memcpy(dst_data + plw, src_data, copy_size); |
| 184 | + dst_data = dst_data + col_matrix_width; |
| 185 | + src_data = src_data + im_width; |
| 186 | + } |
| 187 | + } |
| 188 | + } |
| 189 | + return; |
| 190 | + } |
| 191 | + |
| 192 | + // filter_width != 1 |
| 193 | + // fill width padding |
| 194 | + T* dst_data_ic = col_data; |
| 195 | + for (int ic = 0; ic < im_channels; ++ic) { |
| 196 | + T* dst_data_kh = dst_data_ic; |
| 197 | + for (int kh = 0; kh < filter_height; ++kh) { |
| 198 | + for (T* dst_data : |
| 199 | + {dst_data_kh, dst_data_kh + (filter_width - prw) * col_matrix_width + |
| 200 | + output_width - 1}) { |
| 201 | + // TODO(TJ): from plh, saving repeated assignment |
| 202 | + for (int oh = 0; oh < output_height; ++oh) { |
| 203 | + *dst_data = pad; |
| 204 | + dst_data = dst_data + output_width; |
| 205 | + } |
| 206 | + } |
| 207 | + dst_data_kh = dst_data_kh + col_block_fh; |
| 208 | + } |
| 209 | + dst_data_ic = dst_data_ic + col_block_ic; |
| 210 | + } |
| 211 | + |
| 212 | + // TODO(TJ): use array like: size_t copy_size[kw]={sizeof(T) * |
| 213 | + // (output_width-1)} |
| 214 | + // length of copy_size is equal kw. |
| 215 | + for (int oh = 0; oh < output_height; ++oh) { |
| 216 | + const T* im_data_start = im_data + (oh - plh > 0 ? oh - plh : 0) * im_width; |
| 217 | + T* dst_data = col_data + oh * output_width; |
| 218 | + for (int ic = 0; ic < im_channels; ++ic) { |
| 219 | + const T* src_data = im_data_start + ic * im_size; |
| 220 | + for (int kh = 0; kh < filter_height; ++kh) { |
| 221 | + if ((oh < plh && kh < plh) || (oh > (output_height - prh - 1) && |
| 222 | + kh > (filter_height - prh - 1))) { |
| 223 | + dst_data = dst_data + filter_width * col_matrix_width; |
| 224 | + continue; |
| 225 | + } |
| 226 | + // TODO(TJ): reuse plw-kw outside this for |
| 227 | + // try to unify |
| 228 | + for (int kw = 0; kw < plw; ++kw) { |
| 229 | + std::memcpy(dst_data + (plw - kw), src_data, |
| 230 | + sizeof(T) * (output_width - (plw - kw))); |
| 231 | + dst_data = dst_data + col_matrix_width; |
| 232 | + } |
| 233 | + for (int kw = plw; kw < filter_width - prw; ++kw) { |
| 234 | + std::memcpy(dst_data, src_data + (kw - plw), |
| 235 | + sizeof(T) * output_width); |
| 236 | + dst_data = dst_data + col_matrix_width; |
| 237 | + } |
| 238 | + int i = 1; |
| 239 | + for (int kw = filter_width - prw; kw < filter_width; ++kw, ++i) { |
| 240 | + std::memcpy(dst_data, src_data + (kw - plw), |
| 241 | + sizeof(T) * (output_width - i)); |
| 242 | + dst_data = dst_data + col_matrix_width; |
| 243 | + } |
| 244 | + src_data = src_data + im_width; |
| 245 | + } |
| 246 | + } |
| 247 | + } |
| 248 | +} |
| 249 | + |
| 250 | +} // namespace math |
| 251 | +} // namespace operators |
| 252 | +} // namespace paddle |
0 commit comments