|
| 1 | +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | + |
| 17 | +import paddle.fluid as fluid |
| 18 | +import paddle.fluid.core as core |
| 19 | +import paddle.fluid.layers as layers |
| 20 | +from paddle.fluid.transpiler.distribute_transpiler import delete_ops |
| 21 | +import numpy |
| 22 | + |
| 23 | + |
| 24 | +class TestDistTranspiler(unittest.TestCase): |
| 25 | + def setUp(self): |
| 26 | + self.trainer_id = 0 |
| 27 | + self.trainers = 2 |
| 28 | + self.pservers = 2 |
| 29 | + self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175" |
| 30 | + self.current_pserver_ep = "127.0.0.1:6174" |
| 31 | + |
| 32 | + def net_conf(self): |
| 33 | + x = fluid.layers.data(name='x', shape=[1000], dtype='float32') |
| 34 | + |
| 35 | + y_predict = fluid.layers.fc(input=x, |
| 36 | + size=1000, |
| 37 | + act=None, |
| 38 | + param_attr=fluid.ParamAttr(name='fc_w')) |
| 39 | + |
| 40 | + y = fluid.layers.data(name='y', shape=[1], dtype='float32') |
| 41 | + |
| 42 | + cost = fluid.layers.square_error_cost(input=y_predict, label=y) |
| 43 | + avg_cost = fluid.layers.mean(cost) |
| 44 | + sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1) |
| 45 | + |
| 46 | + optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) |
| 47 | + return optimize_ops, params_grads |
| 48 | + |
| 49 | + def test_transpiler(self): |
| 50 | + trainer = self.get_trainer() |
| 51 | + pserver, startup = self.get_pserver(self.current_pserver_ep) |
| 52 | + |
| 53 | + self.assertEqual([op.type for op in trainer.global_block().ops], |
| 54 | + self.get_expect_trainer_ops()) |
| 55 | + |
| 56 | + self.assertEqual(len(pserver.blocks), 3) |
| 57 | + # block0: listen_and_serv |
| 58 | + self.assertEqual([op.type for op in pserver.blocks[0].ops], |
| 59 | + ["listen_and_serv"]) |
| 60 | + # block2: optimize pass |
| 61 | + self.assertEqual([op.type for op in pserver.blocks[1].ops], |
| 62 | + ["sum", "scale", "sgd"]) |
| 63 | + |
| 64 | + # confirm startup program |
| 65 | + |
| 66 | + self.assertEqual([op.type for op in startup.global_block().ops], [ |
| 67 | + "fill_constant", "fill_constant", "uniform_random", "uniform_random" |
| 68 | + ]) |
| 69 | + |
| 70 | + # the variable #fc_w will be split into two blocks |
| 71 | + fc_w_var = startup.global_block().var("fc_w.block1") |
| 72 | + self.assertEqual(fc_w_var.shape, (500, 1000)) |
| 73 | + |
| 74 | + def get_main_program(self): |
| 75 | + main = fluid.Program() |
| 76 | + |
| 77 | + with fluid.program_guard(main): |
| 78 | + self.net_conf() |
| 79 | + |
| 80 | + return main |
| 81 | + |
| 82 | + def get_expect_trainer_ops(self): |
| 83 | + trainer = fluid.Program() |
| 84 | + |
| 85 | + with fluid.program_guard(trainer): |
| 86 | + optimize_ops, params_grads = self.net_conf() |
| 87 | + |
| 88 | + delete_ops(trainer.global_block(), optimize_ops) |
| 89 | + return [op.type for op in trainer.global_block().ops |
| 90 | + ] + ["split_byref", "send", "concat"] |
| 91 | + |
| 92 | + def get_trainer(self): |
| 93 | + return self._transpiler_instance().get_trainer_program() |
| 94 | + |
| 95 | + def get_pserver(self, ep): |
| 96 | + t = self._transpiler_instance() |
| 97 | + pserver = t.get_pserver_program(ep) |
| 98 | + startup = t.get_startup_program(ep, pserver) |
| 99 | + return pserver, startup |
| 100 | + |
| 101 | + def _transpiler_instance(self): |
| 102 | + main = self.get_main_program() |
| 103 | + t = fluid.DistributeTranspiler() |
| 104 | + t.transpile( |
| 105 | + self.trainer_id, |
| 106 | + program=main, |
| 107 | + pservers=self.pserver_eps, |
| 108 | + trainers=self.trainers) |
| 109 | + return t |
| 110 | + |
| 111 | + |
| 112 | +if __name__ == "__main__": |
| 113 | + unittest.main() |
0 commit comments