Skip to content

Commit 2983939

Browse files
authored
Merge pull request #1635 from luotao1/mse
rename regression_cost to mse_cost
2 parents 77e65d6 + 36ed2ff commit 2983939

File tree

12 files changed

+37
-28
lines changed

12 files changed

+37
-28
lines changed

demo/introduction/api_train_v2.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ def main():
1414
act=paddle.activation.Linear(),
1515
bias_attr=paddle.attr.Param(name='b'))
1616
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
17-
cost = paddle.layer.regression_cost(input=y_predict, label=y)
17+
cost = paddle.layer.mse_cost(input=y_predict, label=y)
1818

1919
# create parameters
2020
parameters = paddle.parameters.create(cost)

demo/introduction/trainer_config.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,5 +34,5 @@
3434
size=1,
3535
act=LinearActivation(),
3636
bias_attr=ParamAttr(name='b'))
37-
cost = regression_cost(input=y_predict, label=y)
37+
cost = mse_cost(input=y_predict, label=y)
3838
outputs(cost)

demo/recommendation/api_train_v2.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def main():
6161

6262
inference = paddle.layer.cos_sim(
6363
a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
64-
cost = paddle.layer.regression_cost(
64+
cost = paddle.layer.mse_cost(
6565
input=inference,
6666
label=paddle.layer.data(
6767
name='score', type=paddle.data_type.dense_vector(1)))

demo/recommendation/trainer_config.py

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -86,10 +86,7 @@ def construct_feature(name):
8686
user_feature = construct_feature("user")
8787
similarity = cos_sim(a=movie_feature, b=user_feature)
8888
if not is_predict:
89-
outputs(
90-
regression_cost(
91-
input=similarity, label=data_layer(
92-
'rating', size=1)))
89+
outputs(mse_cost(input=similarity, label=data_layer('rating', size=1)))
9390

9491
define_py_data_sources2(
9592
'data/train.list',

doc/api/v1/trainer_config_helpers/layers.rst

Lines changed: 12 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -432,6 +432,12 @@ multi_binary_label_cross_entropy
432432
:members: multi_binary_label_cross_entropy
433433
:noindex:
434434

435+
mse_cost
436+
---------
437+
.. automodule:: paddle.trainer_config_helpers.layers
438+
:members: mse_cost
439+
:noindex:
440+
435441
huber_cost
436442
----------
437443
.. automodule:: paddle.trainer_config_helpers.layers
@@ -450,6 +456,12 @@ rank_cost
450456
:members: rank_cost
451457
:noindex:
452458

459+
sum_cost
460+
---------
461+
.. automodule:: paddle.trainer_config_helpers.layers
462+
:members: sum_cost
463+
:noindex:
464+
453465
crf_layer
454466
-----------------
455467
.. automodule:: paddle.trainer_config_helpers.layers
@@ -486,12 +498,6 @@ hsigmoid
486498
:members: hsigmoid
487499
:noindex:
488500

489-
sum_cost
490-
---------
491-
.. automodule:: paddle.trainer_config_helpers.layers
492-
:members: sum_cost
493-
:noindex:
494-
495501
Check Layer
496502
============
497503

doc/getstarted/basic_usage/index_cn.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
5555
# 线性计算网络层: ȳ = wx + b
5656
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
5757
# 计算误差函数,即 ȳ 和真实 y 之间的距离
58-
cost = regression_cost(input= ȳ, label=y)
58+
cost = mse_cost(input= ȳ, label=y)
5959
outputs(cost)
6060
6161
@@ -69,7 +69,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
6969

7070
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x` 和 `y`。
7171
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元,这里利用它建模变量之间的线性关系。计算单元是神经网络的核心,PaddlePaddle支持大量的计算单元和任意深度的网络连接,从而可以拟合任意的函数来学习复杂的数据关系。
72-
- **回归误差代价层**:回归误差代价层 `regression_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
72+
- **回归误差代价层**:回归误差代价层 `mse_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
7373

7474
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
7575

doc/getstarted/basic_usage/index_en.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ To recover this relationship between ``X`` and ``Y``, we use a neural network wi
4949
x = data_layer(name='x', size=1)
5050
y = data_layer(name='y', size=1)
5151
y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
52-
cost = regression_cost(input=y_predict, label=y)
52+
cost = mse_cost(input=y_predict, label=y)
5353
outputs(cost)
5454
5555
Some of the most fundamental usages of PaddlePaddle are demonstrated:

doc/howto/usage/k8s/k8s_distributed_cn.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -213,7 +213,7 @@ I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions
213213
I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done.
214214
[WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config.
215215
[INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating]
216-
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__regression_cost_0__]
216+
[INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__mse_cost_0__]
217217
I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal
218218
I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process
219219
I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process

python/paddle/trainer_config_helpers/layers.py

Lines changed: 10 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -52,6 +52,7 @@
5252
"cos_sim",
5353
"hsigmoid",
5454
"conv_projection",
55+
"mse_cost",
5556
"regression_cost",
5657
'classification_cost',
5758
"LayerOutput",
@@ -3572,11 +3573,14 @@ def __cost_input__(input, label, weight=None):
35723573

35733574
@wrap_name_default()
35743575
@layer_support()
3575-
def regression_cost(input, label, weight=None, name=None, layer_attr=None):
3576+
def mse_cost(input, label, weight=None, name=None, layer_attr=None):
35763577
"""
3577-
Regression Layer.
3578+
mean squared error cost:
3579+
3580+
.. math::
3581+
3582+
$\frac{1}{N}\sum_{i=1}^N(t _i- y_i)^2$
35783583
3579-
TODO(yuyang18): Complete this method.
35803584
35813585
:param name: layer name.
35823586
:type name: basestring
@@ -3602,6 +3606,9 @@ def regression_cost(input, label, weight=None, name=None, layer_attr=None):
36023606
return LayerOutput(name, LayerType.COST, parents=parents, size=1)
36033607

36043608

3609+
regression_cost = mse_cost
3610+
3611+
36053612
@wrap_name_default("cost")
36063613
@layer_support()
36073614
def classification_cost(input,

python/paddle/trainer_config_helpers/tests/configs/protostr/test_cost_layers_with_weight.protostr

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ layers {
4545
coeff: 1.0
4646
}
4747
layers {
48-
name: "__regression_cost_0__"
48+
name: "__mse_cost_0__"
4949
type: "square_error"
5050
size: 1
5151
active_type: ""
@@ -84,7 +84,7 @@ input_layer_names: "input"
8484
input_layer_names: "label"
8585
input_layer_names: "weight"
8686
output_layer_names: "__cost_0__"
87-
output_layer_names: "__regression_cost_0__"
87+
output_layer_names: "__mse_cost_0__"
8888
evaluators {
8989
name: "classification_error_evaluator"
9090
type: "classification_error"
@@ -99,12 +99,12 @@ sub_models {
9999
layer_names: "weight"
100100
layer_names: "__fc_layer_0__"
101101
layer_names: "__cost_0__"
102-
layer_names: "__regression_cost_0__"
102+
layer_names: "__mse_cost_0__"
103103
input_layer_names: "input"
104104
input_layer_names: "label"
105105
input_layer_names: "weight"
106106
output_layer_names: "__cost_0__"
107-
output_layer_names: "__regression_cost_0__"
107+
output_layer_names: "__mse_cost_0__"
108108
evaluator_names: "classification_error_evaluator"
109109
is_recurrent_layer_group: false
110110
}

0 commit comments

Comments
 (0)