|
| 1 | +#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved |
| 2 | +# |
| 3 | +#Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +#you may not use this file except in compliance with the License. |
| 5 | +#You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +#Unless required by applicable law or agreed to in writing, software |
| 10 | +#distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +#See the License for the specific language governing permissions and |
| 13 | +#limitations under the License. |
| 14 | + |
| 15 | +from __future__ import print_function |
| 16 | + |
| 17 | +import sys |
| 18 | + |
| 19 | +import paddle.v2 as paddle |
| 20 | +import paddle.v2.fluid as fluid |
| 21 | +import os |
| 22 | +import sys |
| 23 | + |
| 24 | +TRAINERS = 5 |
| 25 | +BATCH_SIZE = 128 |
| 26 | +PASS_NUM = 100 |
| 27 | + |
| 28 | + |
| 29 | +def resnet_cifar10(input, depth=32): |
| 30 | + def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): |
| 31 | + tmp = fluid.layers.conv2d( |
| 32 | + input=input, |
| 33 | + filter_size=filter_size, |
| 34 | + num_filters=ch_out, |
| 35 | + stride=stride, |
| 36 | + padding=padding, |
| 37 | + act=None, |
| 38 | + bias_attr=False) |
| 39 | + return fluid.layers.batch_norm(input=tmp, act=act) |
| 40 | + |
| 41 | + def shortcut(input, ch_in, ch_out, stride): |
| 42 | + if ch_in != ch_out: |
| 43 | + return conv_bn_layer(input, ch_out, 1, stride, 0, None) |
| 44 | + else: |
| 45 | + return input |
| 46 | + |
| 47 | + def basicblock(input, ch_in, ch_out, stride): |
| 48 | + tmp = conv_bn_layer(input, ch_out, 3, stride, 1) |
| 49 | + tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None) |
| 50 | + short = shortcut(input, ch_in, ch_out, stride) |
| 51 | + return fluid.layers.elementwise_add(x=tmp, y=short, act='relu') |
| 52 | + |
| 53 | + def layer_warp(block_func, input, ch_in, ch_out, count, stride): |
| 54 | + tmp = block_func(input, ch_in, ch_out, stride) |
| 55 | + for i in range(1, count): |
| 56 | + tmp = block_func(tmp, ch_out, ch_out, 1) |
| 57 | + return tmp |
| 58 | + |
| 59 | + assert (depth - 2) % 6 == 0 |
| 60 | + n = (depth - 2) / 6 |
| 61 | + conv1 = conv_bn_layer( |
| 62 | + input=input, ch_out=16, filter_size=3, stride=1, padding=1) |
| 63 | + res1 = layer_warp(basicblock, conv1, 16, 16, n, 1) |
| 64 | + res2 = layer_warp(basicblock, res1, 16, 32, n, 2) |
| 65 | + res3 = layer_warp(basicblock, res2, 32, 64, n, 2) |
| 66 | + pool = fluid.layers.pool2d( |
| 67 | + input=res3, pool_size=8, pool_type='avg', pool_stride=1) |
| 68 | + return pool |
| 69 | + |
| 70 | + |
| 71 | +def vgg16_bn_drop(input): |
| 72 | + def conv_block(input, num_filter, groups, dropouts): |
| 73 | + return fluid.nets.img_conv_group( |
| 74 | + input=input, |
| 75 | + pool_size=2, |
| 76 | + pool_stride=2, |
| 77 | + conv_num_filter=[num_filter] * groups, |
| 78 | + conv_filter_size=3, |
| 79 | + conv_act='relu', |
| 80 | + conv_with_batchnorm=True, |
| 81 | + conv_batchnorm_drop_rate=dropouts, |
| 82 | + pool_type='max') |
| 83 | + |
| 84 | + conv1 = conv_block(input, 64, 2, [0.3, 0]) |
| 85 | + conv2 = conv_block(conv1, 128, 2, [0.4, 0]) |
| 86 | + conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) |
| 87 | + conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) |
| 88 | + conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) |
| 89 | + |
| 90 | + drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) |
| 91 | + fc1 = fluid.layers.fc(input=drop, size=512, act=None) |
| 92 | + bn = fluid.layers.batch_norm(input=fc1, act='relu') |
| 93 | + drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) |
| 94 | + fc2 = fluid.layers.fc(input=drop2, size=512, act=None) |
| 95 | + return fc2 |
| 96 | + |
| 97 | + |
| 98 | +classdim = 10 |
| 99 | +data_shape = [3, 32, 32] |
| 100 | + |
| 101 | +images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') |
| 102 | +label = fluid.layers.data(name='label', shape=[1], dtype='int64') |
| 103 | + |
| 104 | +net_type = "vgg" |
| 105 | +if len(sys.argv) >= 2: |
| 106 | + net_type = sys.argv[1] |
| 107 | + |
| 108 | +if net_type == "vgg": |
| 109 | + print("train vgg net") |
| 110 | + net = vgg16_bn_drop(images) |
| 111 | +elif net_type == "resnet": |
| 112 | + print("train resnet") |
| 113 | + net = resnet_cifar10(images, 32) |
| 114 | +else: |
| 115 | + raise ValueError("%s network is not supported" % net_type) |
| 116 | + |
| 117 | +predict = fluid.layers.fc(input=net, size=classdim, act='softmax') |
| 118 | +cost = fluid.layers.cross_entropy(input=predict, label=label) |
| 119 | +avg_cost = fluid.layers.mean(x=cost) |
| 120 | + |
| 121 | +optimizer = fluid.optimizer.Adam(learning_rate=0.001) |
| 122 | +optimize_ops, params_grads = optimizer.minimize(avg_cost) |
| 123 | + |
| 124 | +accuracy = fluid.evaluator.Accuracy(input=predict, label=label) |
| 125 | + |
| 126 | +train_reader = paddle.batch( |
| 127 | + paddle.reader.shuffle( |
| 128 | + paddle.dataset.cifar.train10(), buf_size=128 * 10), |
| 129 | + batch_size=BATCH_SIZE) |
| 130 | + |
| 131 | +place = fluid.CPUPlace() |
| 132 | +exe = fluid.Executor(place) |
| 133 | + |
| 134 | +t = fluid.DistributeTranspiler() |
| 135 | +# all parameter server endpoints list for spliting parameters |
| 136 | +pserver_endpoints = os.getenv("PSERVERS") |
| 137 | +# server endpoint for current node |
| 138 | +current_endpoint = os.getenv("SERVER_ENDPOINT") |
| 139 | +# run as trainer or parameter server |
| 140 | +training_role = os.getenv("TRAINING_ROLE", |
| 141 | + "TRAINER") # get the training role: trainer/pserver |
| 142 | +t.transpile( |
| 143 | + optimize_ops, params_grads, pservers=pserver_endpoints, trainers=TRAINERS) |
| 144 | + |
| 145 | +if training_role == "PSERVER": |
| 146 | + if not current_endpoint: |
| 147 | + print("need env SERVER_ENDPOINT") |
| 148 | + exit(1) |
| 149 | + print("start pserver at:", current_endpoint) |
| 150 | + pserver_prog = t.get_pserver_program(current_endpoint) |
| 151 | + pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) |
| 152 | + exe.run(pserver_startup) |
| 153 | + exe.run(pserver_prog) |
| 154 | + print("pserver run end") |
| 155 | +elif training_role == "TRAINER": |
| 156 | + print("start trainer") |
| 157 | + trainer_prog = t.get_trainer_program() |
| 158 | + feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) |
| 159 | + exe.run(fluid.default_startup_program()) |
| 160 | + for pass_id in range(PASS_NUM): |
| 161 | + accuracy.reset(exe) |
| 162 | + for data in train_reader(): |
| 163 | + loss, acc = exe.run(trainer_prog, |
| 164 | + feed=feeder.feed(data), |
| 165 | + fetch_list=[avg_cost] + accuracy.metrics) |
| 166 | + pass_acc = accuracy.eval(exe) |
| 167 | + print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( |
| 168 | + pass_acc)) |
| 169 | + # this model is slow, so if we can train two mini batch, we think it works properly. |
| 170 | + print("trainer run end") |
| 171 | +else: |
| 172 | + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") |
| 173 | +exit(1) |
0 commit comments