@@ -162,9 +162,9 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
162
162
" user should avoid setting this attribute." )
163
163
.SetDefault ({});
164
164
AddComment (R"DOC(
165
- Compute and return the noise-contrastive estimation training loss. See
166
- `Noise-contrastive estimation: A new estimation principle for unnormalized
167
- statistical models
165
+ Compute and return the noise-contrastive estimation training loss. See
166
+ `Noise-contrastive estimation: A new estimation principle for unnormalized
167
+ statistical models
168
168
<http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
169
169
By default this operator uses a uniform distribution for sampling.
170
170
)DOC" );
@@ -230,14 +230,14 @@ class NCEOpGradVarTypeInference : public framework::VarTypeInference {
230
230
auto attr = op_desc.GetAttr (" is_sparse" );
231
231
bool is_sparse = boost::get<bool >(attr);
232
232
if (is_sparse) {
233
- VLOG (30 ) << " nce_op_grad op " << weight_grad << " and " << bias_grad
234
- << " is set to SelectedRows" ;
233
+ VLOG (3 ) << " nce_op_grad op " << weight_grad << " and " << bias_grad
234
+ << " is set to SelectedRows" ;
235
235
block->Var (weight_grad)
236
236
->SetType (framework::proto::VarType::SELECTED_ROWS);
237
237
block->Var (bias_grad)->SetType (framework::proto::VarType::SELECTED_ROWS);
238
238
} else {
239
- VLOG (30 ) << " nce_op_grad op " << weight_grad << " and " << bias_grad
240
- << " is set to LoDTensor" ;
239
+ VLOG (3 ) << " nce_op_grad op " << weight_grad << " and " << bias_grad
240
+ << " is set to LoDTensor" ;
241
241
block->Var (weight_grad)->SetType (framework::proto::VarType::LOD_TENSOR);
242
242
block->Var (bias_grad)->SetType (framework::proto::VarType::LOD_TENSOR);
243
243
}
0 commit comments