Skip to content

Commit 3000e99

Browse files
authored
Write the Understand Sentiment book example with stacked LSTM using new API (#10355)
* Add understand apiu with stacked lstm for new API * Complete exam
1 parent 8a071ff commit 3000e99

File tree

1 file changed

+140
-0
lines changed

1 file changed

+140
-0
lines changed
Lines changed: 140 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,140 @@
1+
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
from __future__ import print_function
16+
17+
import paddle
18+
import paddle.fluid as fluid
19+
from functools import partial
20+
21+
CLASS_DIM = 2
22+
EMB_DIM = 128
23+
HID_DIM = 512
24+
STACKED_NUM = 3
25+
26+
27+
def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
28+
assert stacked_num % 2 == 1
29+
30+
emb = fluid.layers.embedding(
31+
input=data, size=[input_dim, emb_dim], is_sparse=True)
32+
33+
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
34+
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
35+
36+
inputs = [fc1, lstm1]
37+
38+
for i in range(2, stacked_num + 1):
39+
fc = fluid.layers.fc(input=inputs, size=hid_dim)
40+
lstm, cell = fluid.layers.dynamic_lstm(
41+
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
42+
inputs = [fc, lstm]
43+
44+
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
45+
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
46+
47+
prediction = fluid.layers.fc(input=[fc_last, lstm_last],
48+
size=class_dim,
49+
act='softmax')
50+
return prediction
51+
52+
53+
def inference_network(word_dict):
54+
data = fluid.layers.data(
55+
name="words", shape=[1], dtype="int64", lod_level=1)
56+
57+
dict_dim = len(word_dict)
58+
net = stacked_lstm_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM,
59+
STACKED_NUM)
60+
return net
61+
62+
63+
def train_network(word_dict):
64+
prediction = inference_network(word_dict)
65+
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
66+
cost = fluid.layers.cross_entropy(input=prediction, label=label)
67+
avg_cost = fluid.layers.mean(cost)
68+
accuracy = fluid.layers.accuracy(input=prediction, label=label)
69+
return avg_cost, accuracy
70+
71+
72+
def train(use_cuda, save_path):
73+
BATCH_SIZE = 128
74+
EPOCH_NUM = 5
75+
76+
word_dict = paddle.dataset.imdb.word_dict()
77+
78+
train_data = paddle.batch(
79+
paddle.reader.shuffle(
80+
paddle.dataset.imdb.train(word_dict), buf_size=1000),
81+
batch_size=BATCH_SIZE)
82+
83+
test_data = paddle.batch(
84+
paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)
85+
86+
def event_handler(event):
87+
if isinstance(event, fluid.EndIteration):
88+
if (event.batch_id % 10) == 0:
89+
avg_cost, accuracy = trainer.test(reader=test_data)
90+
91+
print('BatchID {1:04}, Loss {2:2.2}, Acc {3:2.2}'.format(
92+
event.batch_id + 1, avg_cost, accuracy))
93+
94+
if accuracy > 0.01: # Low threshold for speeding up CI
95+
trainer.params.save(save_path)
96+
return
97+
98+
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
99+
trainer = fluid.Trainer(
100+
partial(train_network, word_dict),
101+
optimizer=fluid.optimizer.Adagrad(learning_rate=0.002),
102+
place=place,
103+
event_handler=event_handler)
104+
105+
trainer.train(train_data, EPOCH_NUM, event_handler=event_handler)
106+
107+
108+
def infer(use_cuda, save_path):
109+
params = fluid.Params(save_path)
110+
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
111+
word_dict = paddle.dataset.imdb.word_dict()
112+
inferencer = fluid.Inferencer(
113+
partial(inference_network, word_dict), params, place=place)
114+
115+
def create_random_lodtensor(lod, place, low, high):
116+
data = np.random.random_integers(low, high,
117+
[lod[-1], 1]).astype("int64")
118+
res = fluid.LoDTensor()
119+
res.set(data, place)
120+
res.set_lod([lod])
121+
return res
122+
123+
lod = [0, 4, 10]
124+
tensor_words = create_random_lodtensor(
125+
lod, place, low=0, high=len(word_dict) - 1)
126+
results = inferencer.infer({'words': tensor_words})
127+
print("infer results: ", results)
128+
129+
130+
def main(use_cuda):
131+
if use_cuda and not fluid.core.is_compiled_with_cuda():
132+
return
133+
save_path = "understand_sentiment_stacked_lstm.inference.model"
134+
train(use_cuda, save_path)
135+
infer(use_cuda, save_path)
136+
137+
138+
if __name__ == '__main__':
139+
for use_cuda in (False, True):
140+
main(use_cuda=use_cuda)

0 commit comments

Comments
 (0)