Skip to content

Commit 30b66f0

Browse files
authored
fix conflict (#44891)
1 parent 247002e commit 30b66f0

File tree

4 files changed

+458
-456
lines changed

4 files changed

+458
-456
lines changed

python/paddle/distributed/auto_parallel/dist_op.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,7 @@
2626

2727

2828
class DistributedOperator:
29+
2930
def __init__(self, serial_op, dist_attr=None):
3031
self._serial_op = serial_op
3132
self._serial_inputs = {}
@@ -248,6 +249,7 @@ def __deepcopy__(self, memo):
248249

249250

250251
class DistributedModule:
252+
251253
def __init__(self, serial_module, dist_attr=None):
252254
self._serial_module = serial_module
253255
self._dist_attr = dist_attr
@@ -265,6 +267,4 @@ def __call__(self, *args, **kwargs):
265267
dist_op = DistributedOperator(op, self._dist_attr)
266268
dist_op.dist_attr.mark_annotated_as(self._dist_attr)
267269
default_dist_ctx.add_dist_op_for_program(dist_op)
268-
if isinstance(output, Variable):
269-
output = [output]
270-
return list(output)
270+
return output

python/paddle/fluid/tests/unittests/auto_parallel/engine_api.py

Lines changed: 30 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -47,6 +47,7 @@
4747

4848

4949
class MyDataset(Dataset):
50+
5051
def __init__(self, num_samples):
5152
super(MyDataset, self).__init__()
5253
self.num_samples = num_samples
@@ -61,6 +62,7 @@ def __len__(self):
6162

6263

6364
class MLPLayer(nn.Layer):
65+
6466
def __init__(self,
6567
hidden_size=1024,
6668
intermediate_size=4 * 1024,
@@ -69,43 +71,45 @@ def __init__(self,
6971
super(MLPLayer, self).__init__()
7072
d_model = hidden_size
7173
dim_feedforward = intermediate_size
72-
weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
73-
mean=0.0, std=initializer_range))
74+
weight_attr = paddle.ParamAttr(
75+
initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
7476
bias_attr = None
7577

76-
self.linear0 = nn.Linear(
77-
d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
78-
self.linear1 = nn.Linear(
79-
dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
78+
self.linear0 = nn.Linear(d_model,
79+
dim_feedforward,
80+
weight_attr,
81+
bias_attr=bias_attr)
82+
self.linear1 = nn.Linear(dim_feedforward,
83+
d_model,
84+
weight_attr,
85+
bias_attr=bias_attr)
8086
self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
8187
self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
8288
self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")
8389

8490
def forward(self, input):
85-
out = auto.shard_op(
86-
self.norm, dist_attr={"process_mesh": PP_MESH_0})(input)[0]
87-
out = self.linear0(input)
91+
out = auto.shard_op(self.norm, dist_attr={"process_mesh":
92+
PP_MESH_0})(input)
93+
out = self.linear0(out)
8894
out = F.gelu(out, approximate=True)
89-
out = auto.shard_op(
90-
self.linear1, dist_attr={"process_mesh": PP_MESH_1})(out)[0]
95+
out = auto.shard_op(self.linear1, dist_attr={"process_mesh":
96+
PP_MESH_1})(out)
9197
out = self.dropout(out)
9298
out = self.linear2(out)
9399
return out
94100

95101

96102
def train():
97-
mlp = MLPLayer(
98-
hidden_size=hidden_size,
99-
intermediate_size=4 * hidden_size,
100-
dropout_ratio=0.1,
101-
initializer_range=0.02)
103+
mlp = MLPLayer(hidden_size=hidden_size,
104+
intermediate_size=4 * hidden_size,
105+
dropout_ratio=0.1,
106+
initializer_range=0.02)
102107
loss = paddle.nn.CrossEntropyLoss()
103-
optimizer = paddle.fluid.optimizer.AdamOptimizer(
104-
learning_rate=0.00001,
105-
beta1=0.9,
106-
beta2=0.999,
107-
epsilon=1e-08,
108-
grad_clip=None)
108+
optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
109+
beta1=0.9,
110+
beta2=0.999,
111+
epsilon=1e-08,
112+
grad_clip=None)
109113

110114
dataset = MyDataset(batch_num * batch_size)
111115
inputs_spec = InputSpec([batch_size, hidden_size], 'float32', 'x')
@@ -119,11 +123,10 @@ def train():
119123
dist_strategy.semi_auto = True
120124
fleet.init(is_collective=True, strategy=dist_strategy)
121125

122-
engine = Engine(
123-
mlp,
124-
inputs_spec=inputs_spec,
125-
labels_spec=labels_spec,
126-
strategy=dist_strategy)
126+
engine = Engine(mlp,
127+
inputs_spec=inputs_spec,
128+
labels_spec=labels_spec,
129+
strategy=dist_strategy)
127130
engine.prepare(optimizer, loss)
128131
engine.fit(dataset,
129132
batch_size=batch_size,

0 commit comments

Comments
 (0)