|
| 1 | +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import print_function |
| 16 | + |
| 17 | +import os |
| 18 | +import time |
| 19 | +import logging |
| 20 | + |
| 21 | +import paddle |
| 22 | +import paddle.fluid as fluid |
| 23 | +from paddle.fluid import core |
| 24 | +from paddle.fluid import io |
| 25 | +from paddle.fluid import Program |
| 26 | + |
| 27 | +__all__ = [ |
| 28 | + "load_inference_model", "load_persistable_vars", |
| 29 | + "convert_dist_to_sparse_program" |
| 30 | +] |
| 31 | + |
| 32 | +logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') |
| 33 | +_logger = logging.getLogger("lookup_table_utils") |
| 34 | +_logger.setLevel(logging.INFO) |
| 35 | + |
| 36 | +model_filename = "__model__" |
| 37 | +lookup_table_dir = "__lookup_table__" |
| 38 | + |
| 39 | + |
| 40 | +def __insert_lookup_sparse_table_op(main_program, idx, ids, w, out): |
| 41 | + main_program.global_block()._insert_op( |
| 42 | + index=idx, |
| 43 | + type="lookup_sparse_table", |
| 44 | + inputs={"Ids": [ids], |
| 45 | + "W": [w]}, |
| 46 | + outputs={"Out": [out]}, |
| 47 | + attrs={ |
| 48 | + "is_distributed": False, |
| 49 | + "is_sparse": True, |
| 50 | + "grad_inplace": False |
| 51 | + }) |
| 52 | + |
| 53 | + |
| 54 | +def __get_prefetch_op_tuples(main_program): |
| 55 | + # current lookup tables op is split_ids->prefetch->merge_ids |
| 56 | + prefetch_op_tuples = None |
| 57 | + op_types = [op.type for op in main_program.global_block().ops] |
| 58 | + |
| 59 | + for i in range(len(op_types)): |
| 60 | + if op_types[i] == "prefetch": |
| 61 | + if op_types[i - 1] == "split_ids" and op_types[i + |
| 62 | + 1] == "merge_ids": |
| 63 | + split_ids_op_id = i - 1 |
| 64 | + split_ids_inputs = main_program.global_block().ops[i - 1].input( |
| 65 | + "Ids") |
| 66 | + prefetch_op_inputs = main_program.global_block().ops[i].input( |
| 67 | + "X") |
| 68 | + prefetch_op_outputs = main_program.global_block().ops[i].output( |
| 69 | + "Out") |
| 70 | + merge_ids_outputs = main_program.global_block().ops[ |
| 71 | + i + 1].output("Out") |
| 72 | + |
| 73 | + need_delete_vars = [] |
| 74 | + need_delete_vars.extend(prefetch_op_inputs) |
| 75 | + need_delete_vars.extend(prefetch_op_outputs) |
| 76 | + |
| 77 | + prefetch_op_tuples = (split_ids_op_id, split_ids_inputs, |
| 78 | + merge_ids_outputs, need_delete_vars) |
| 79 | + break |
| 80 | + return prefetch_op_tuples |
| 81 | + |
| 82 | + |
| 83 | +def convert_dist_to_sparse_program(main_program): |
| 84 | + if not main_program._distributed_lookup_table: |
| 85 | + _logger.warn( |
| 86 | + "There are no distributed lookup tables need to be converted") |
| 87 | + return |
| 88 | + |
| 89 | + # create table param and grad var in pserver program |
| 90 | + origin_emb_var = "{}.origin".format(main_program._distributed_lookup_table) |
| 91 | + emb_var = main_program._distributed_lookup_table |
| 92 | + main_program.global_block()._rename_var(emb_var, origin_emb_var) |
| 93 | + origin_param_var = main_program.global_block().vars[origin_emb_var] |
| 94 | + |
| 95 | + param_var = main_program.global_block().create_var( |
| 96 | + name=emb_var, |
| 97 | + shape=origin_param_var.shape, |
| 98 | + dtype=origin_param_var.dtype, |
| 99 | + type=core.VarDesc.VarType.SELECTED_ROWS, |
| 100 | + persistable=True) |
| 101 | + # parameter must be selected rows |
| 102 | + param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS) |
| 103 | + main_program._sync_with_cpp() |
| 104 | + |
| 105 | + prefetch_op_tuples = __get_prefetch_op_tuples(main_program) |
| 106 | + |
| 107 | + split_ids_id = prefetch_op_tuples[0] |
| 108 | + |
| 109 | + for idx in range(split_ids_id + 2, split_ids_id - 1, -1): |
| 110 | + main_program.global_block()._remove_op(idx) |
| 111 | + main_program.desc.flush() |
| 112 | + |
| 113 | + in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2]) |
| 114 | + |
| 115 | + for in_out_pair in in_out_pairs: |
| 116 | + idx = split_ids_id |
| 117 | + ids = main_program.global_block().vars[in_out_pair[0]] |
| 118 | + out = main_program.global_block().vars[in_out_pair[1]] |
| 119 | + __insert_lookup_sparse_table_op(main_program, idx, ids, param_var, out) |
| 120 | + main_program.desc.flush() |
| 121 | + return main_program |
| 122 | + |
| 123 | + |
| 124 | +def load_persistable_vars(executor, dirname, program, lookup_table_var): |
| 125 | + def _is_checkpoint_var(exclude_fluid_vars=None): |
| 126 | + """ |
| 127 | + the checkpoint will not save or load all the variables. |
| 128 | + var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded. |
| 129 | +
|
| 130 | + : param var(Variable) |
| 131 | + """ |
| 132 | + |
| 133 | + if exclude_fluid_vars is None: |
| 134 | + exclude_fluid_vars = [] |
| 135 | + |
| 136 | + def is_valid(var): |
| 137 | + if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ |
| 138 | + var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ |
| 139 | + var.desc.type() == core.VarDesc.VarType.RAW: |
| 140 | + return False |
| 141 | + # @GRAD are named for gradient variables, checkpoint will not save it. |
| 142 | + if "@GRAD" in var.name: |
| 143 | + return False |
| 144 | + # .trainer_ are named for distribute train variables, checkpoint will not save it. |
| 145 | + if ".trainer_" in var.name: |
| 146 | + return False |
| 147 | + |
| 148 | + # .block is named for distribute train variables, checkpoint will not save it. |
| 149 | + if ".block" in var.name: |
| 150 | + return False |
| 151 | + |
| 152 | + if "tmp_" in var.name: |
| 153 | + return False |
| 154 | + |
| 155 | + if var.name in exclude_fluid_vars: |
| 156 | + return False |
| 157 | + |
| 158 | + return var.persistable |
| 159 | + |
| 160 | + return is_valid |
| 161 | + |
| 162 | + def _load_lookup_table_vars(executor, dirname, main_program, |
| 163 | + lookup_table_vars): |
| 164 | + if not os.path.isdir(dirname): |
| 165 | + raise ValueError("There is no directory named '%s'", dirname) |
| 166 | + |
| 167 | + lookup_table_dirname = os.path.join(dirname, lookup_table_dir) |
| 168 | + |
| 169 | + emb_var_name = lookup_table_vars[0] |
| 170 | + emb_var = main_program.global_block().var(emb_var_name) |
| 171 | + |
| 172 | + emb_files = [] |
| 173 | + for emb_name in os.listdir(lookup_table_dirname): |
| 174 | + if emb_var_name in emb_name: |
| 175 | + emb_files.append(emb_name) |
| 176 | + |
| 177 | + convert_program = Program() |
| 178 | + global_block = convert_program.global_block() |
| 179 | + |
| 180 | + emb_var = global_block.create_var( |
| 181 | + name=emb_var.name, |
| 182 | + shape=emb_var.shape, |
| 183 | + dtype=emb_var.dtype, |
| 184 | + type=core.VarDesc.VarType.SELECTED_ROWS, |
| 185 | + persistable=True) |
| 186 | + emb_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS) |
| 187 | + |
| 188 | + sums = [] |
| 189 | + |
| 190 | + for i, emb_file in enumerate(emb_files): |
| 191 | + var_name = "{}_{}".format(emb_var.name, i) |
| 192 | + param_var = global_block.create_var( |
| 193 | + name=var_name, |
| 194 | + shape=emb_var.shape, |
| 195 | + dtype=emb_var.dtype, |
| 196 | + type=core.VarDesc.VarType.SELECTED_ROWS, |
| 197 | + persistable=True) |
| 198 | + param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS) |
| 199 | + global_block.append_op( |
| 200 | + type='load', |
| 201 | + inputs={}, |
| 202 | + outputs={'Out': [param_var]}, |
| 203 | + attrs={ |
| 204 | + 'file_path': os.path.join(lookup_table_dirname, var_name) |
| 205 | + }) |
| 206 | + sums.append(param_var) |
| 207 | + global_block.append_op( |
| 208 | + type='sum', inputs={"X": sums}, outputs={'Out': emb_var}, attrs={}) |
| 209 | + global_block.append_op(type='delete_var', inputs={'X': sums}) |
| 210 | + executor.run(convert_program) |
| 211 | + |
| 212 | + _logger.info("Start Load Sparse Program With " |
| 213 | + "Distributed Lookup Table Vars from {}, time = {}".format( |
| 214 | + dirname, time.ctime())) |
| 215 | + |
| 216 | + lookup_table_vars = [lookup_table_var] |
| 217 | + |
| 218 | + io.load_vars( |
| 219 | + executor, |
| 220 | + dirname=dirname, |
| 221 | + main_program=program, |
| 222 | + predicate=_is_checkpoint_var(lookup_table_vars), |
| 223 | + filename=None) |
| 224 | + |
| 225 | + _load_lookup_table_vars(executor, dirname, program, lookup_table_vars) |
| 226 | + |
| 227 | + _logger.info("Finish Load Sparse Program With " |
| 228 | + "Distributed Lookup Table Vars from {}, time = {}".format( |
| 229 | + dirname, time.ctime())) |
| 230 | + |
| 231 | + |
| 232 | +def load_inference_model(dirname, executor, lookup_table_var_name): |
| 233 | + if not os.path.isdir(dirname): |
| 234 | + raise ValueError("There is no directory named '%s'", dirname) |
| 235 | + |
| 236 | + local_model = os.path.join(dirname, model_filename) |
| 237 | + |
| 238 | + with open(local_model, "rb") as f: |
| 239 | + program_desc_str = f.read() |
| 240 | + |
| 241 | + program = Program.parse_from_string(program_desc_str) |
| 242 | + |
| 243 | + if not core._is_program_version_supported(program._version()): |
| 244 | + raise ValueError("Unsupported program version: %d\n" % |
| 245 | + program._version()) |
| 246 | + |
| 247 | + # Binary data also need version. |
| 248 | + load_persistable_vars(executor, dirname, program, lookup_table_var_name) |
| 249 | + |
| 250 | + feed_target_names = program.desc.get_feed_target_names() |
| 251 | + fetch_target_names = program.desc.get_fetch_target_names() |
| 252 | + fetch_targets = [ |
| 253 | + program.global_block().var(name) for name in fetch_target_names |
| 254 | + ] |
| 255 | + |
| 256 | + return [program, feed_target_names, fetch_targets] |
0 commit comments