@@ -71,8 +71,8 @@ class GRUKernel : public framework::OpKernel<T> {
71
71
72
72
int frame_size = hidden_dims[1 ];
73
73
math::hl_gru_value<T> gru_value;
74
- gru_value.gateWeight = const_cast <T*>(weight_data);
75
- gru_value.stateWeight =
74
+ gru_value.gate_weight = const_cast <T*>(weight_data);
75
+ gru_value.state_weight =
76
76
const_cast <T*>(weight_data + 2 * frame_size * frame_size);
77
77
Tensor ordered_h0;
78
78
const size_t * order = batch_gate->lod ()[2 ].data ();
@@ -82,9 +82,9 @@ class GRUKernel : public framework::OpKernel<T> {
82
82
// to reorder.
83
83
ReorderInitState<Place, T>(context.device_context (), *h0, order,
84
84
&ordered_h0, true );
85
- gru_value.prevOutValue = ordered_h0.data <T>();
85
+ gru_value.prev_out_value = ordered_h0.data <T>();
86
86
} else {
87
- gru_value.prevOutValue = nullptr ;
87
+ gru_value.prev_out_value = nullptr ;
88
88
}
89
89
auto batch_starts = batch_gate->lod ()[0 ];
90
90
size_t num_batch = batch_starts.size () - 1 ;
@@ -96,14 +96,14 @@ class GRUKernel : public framework::OpKernel<T> {
96
96
Tensor gate_t = batch_gate->Slice (bstart, bend);
97
97
Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice (bstart, bend);
98
98
Tensor hidden_t = batch_hidden->Slice (bstart, bend);
99
- gru_value.outputValue = hidden_t .data <T>();
100
- gru_value.gateValue = gate_t .data <T>();
101
- gru_value.resetOutputValue = reset_hidden_prev_t .data <T>();
99
+ gru_value.output_value = hidden_t .data <T>();
100
+ gru_value.gate_value = gate_t .data <T>();
101
+ gru_value.reset_output_value = reset_hidden_prev_t .data <T>();
102
102
math::GRUUnitFunctor<Place, T>::compute (
103
103
dev_ctx, gru_value, frame_size, cur_batch_size,
104
104
math::ActiveType (context.Attr <std::string>(" activation" )),
105
105
math::ActiveType (context.Attr <std::string>(" gate_activation" )));
106
- gru_value.prevOutValue = gru_value.outputValue ;
106
+ gru_value.prev_out_value = gru_value.output_value ;
107
107
}
108
108
109
109
math::Batch2LoDTensorFunctor<Place, T> to_seq;
@@ -169,20 +169,20 @@ class GRUGradKernel : public framework::OpKernel<T> {
169
169
to_batch (dev_ctx, *hidden_grad, batch_hidden_grad, false , is_reverse);
170
170
171
171
math::hl_gru_value<T> gru_value;
172
- gru_value.gateWeight = const_cast <T*>(weight_data);
173
- gru_value.stateWeight =
172
+ gru_value.gate_weight = const_cast <T*>(weight_data);
173
+ gru_value.state_weight =
174
174
const_cast <T*>(weight_data + 2 * frame_size * frame_size);
175
175
176
176
math::hl_gru_grad<T> gru_grad;
177
177
if (weight_grad) {
178
- gru_grad.gateWeightGrad =
178
+ gru_grad.gate_weight_grad =
179
179
weight_grad->mutable_data <T>(context.GetPlace ());
180
180
zero (dev_ctx, weight_grad, static_cast <T>(0.0 ));
181
- gru_grad.stateWeightGrad =
181
+ gru_grad.state_weight_grad =
182
182
weight_grad->data <T>() + 2 * frame_size * frame_size;
183
183
} else {
184
- gru_grad.gateWeightGrad = nullptr ;
185
- gru_grad.stateWeightGrad = nullptr ;
184
+ gru_grad.gate_weight_grad = nullptr ;
185
+ gru_grad.state_weight_grad = nullptr ;
186
186
}
187
187
188
188
auto batch_starts = batch_hidden_grad.lod ()[0 ];
@@ -193,27 +193,27 @@ class GRUGradKernel : public framework::OpKernel<T> {
193
193
int cur_batch_size = bend - bstart;
194
194
195
195
Tensor gate_t = batch_gate->Slice (bstart, bend);
196
- gru_value.gateValue = gate_t .data <T>();
196
+ gru_value.gate_value = gate_t .data <T>();
197
197
Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice (bstart, bend);
198
- gru_value.resetOutputValue = reset_hidden_prev_t .data <T>();
198
+ gru_value.reset_output_value = reset_hidden_prev_t .data <T>();
199
199
200
200
Tensor hidden_grad_t = batch_hidden_grad.Slice (bstart, bend);
201
- gru_grad.outputGrad = hidden_grad_t .data <T>();
201
+ gru_grad.output_grad = hidden_grad_t .data <T>();
202
202
Tensor gate_grad_t = batch_gate_grad.Slice (bstart, bend);
203
- gru_grad.gateGrad = gate_grad_t .data <T>();
203
+ gru_grad.gate_grad = gate_grad_t .data <T>();
204
204
Tensor reset_hidden_prev_grad_t =
205
205
batch_reset_hidden_prev_grad.Slice (bstart, bend);
206
- gru_grad.resetOutputGrad = reset_hidden_prev_grad_t .data <T>();
206
+ gru_grad.reset_output_grad = reset_hidden_prev_grad_t .data <T>();
207
207
if (n == 0 ) {
208
- gru_value.prevOutValue = h0 ? ordered_h0.data <T>() : nullptr ;
209
- gru_grad.prevOutGrad =
208
+ gru_value.prev_out_value = h0 ? ordered_h0.data <T>() : nullptr ;
209
+ gru_grad.prev_out_grad =
210
210
h0 && h0_grad ? ordered_h0_grad.data <T>() : nullptr ;
211
211
} else {
212
212
int bstart_pre = static_cast <int >(batch_starts[n - 1 ]);
213
213
Tensor hidden_prev_t = batch_hidden->Slice (bstart_pre, bstart);
214
- gru_value.prevOutValue = hidden_prev_t .data <T>();
214
+ gru_value.prev_out_value = hidden_prev_t .data <T>();
215
215
Tensor hidden_prev_grad_t = batch_hidden_grad.Slice (bstart_pre, bstart);
216
- gru_grad.prevOutGrad = hidden_prev_grad_t .data <T>();
216
+ gru_grad.prev_out_grad = hidden_prev_grad_t .data <T>();
217
217
}
218
218
219
219
math::GRUUnitGradFunctor<Place, T>::compute (
0 commit comments