|
| 1 | +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#pragma once |
| 16 | + |
| 17 | +#include <string> |
| 18 | +#include <vector> |
| 19 | +#include "ngraph/ngraph.hpp" |
| 20 | +#include "paddle/fluid/platform/ngraph_helper.h" |
| 21 | + |
| 22 | +namespace paddle { |
| 23 | +namespace operators { |
| 24 | +namespace ngraphs { |
| 25 | + |
| 26 | +std::shared_ptr<ngraph::Node> GroupedConvolution( |
| 27 | + const std::shared_ptr<ngraph::Node>& data_batch, |
| 28 | + const std::shared_ptr<ngraph::Node>& filters, const ngraph::Strides strides, |
| 29 | + const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings, |
| 30 | + size_t groups) { |
| 31 | + auto& data_shape = data_batch->get_shape(); |
| 32 | + auto& filter_shape = filters->get_shape(); |
| 33 | + ngraph::NodeVector ng_slices; |
| 34 | + |
| 35 | + for (size_t i = 0; i < groups; ++i) { |
| 36 | + size_t channel_step = filter_shape.at(1); |
| 37 | + const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0}; |
| 38 | + const std::vector<size_t> upper_bound{data_shape.at(0), |
| 39 | + (i + 1) * channel_step, |
| 40 | + data_shape.at(2), data_shape.at(3)}; |
| 41 | + auto data_slice = std::make_shared<ngraph::op::Slice>( |
| 42 | + data_batch, lower_bound, upper_bound); |
| 43 | + |
| 44 | + size_t filter_step = filter_shape.at(0) / groups; |
| 45 | + const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0}; |
| 46 | + const std::vector<size_t> filter_upper_bound{ |
| 47 | + (i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2), |
| 48 | + filter_shape.at(3)}; |
| 49 | + auto filter_slice = std::make_shared<ngraph::op::Slice>( |
| 50 | + filters, filter_lower_bound, filter_upper_bound); |
| 51 | + auto ng_conv = std::make_shared<ngraph::op::Convolution>( |
| 52 | + data_slice, filter_slice, strides, dilations, paddings, paddings); |
| 53 | + ng_slices.push_back(ng_conv); |
| 54 | + } |
| 55 | + |
| 56 | + size_t concat_axis = 1; |
| 57 | + return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis); |
| 58 | +} |
| 59 | + |
| 60 | +std::shared_ptr<ngraph::Node> GroupedGradConvolutionFilter( |
| 61 | + const std::shared_ptr<ngraph::Node>& data_batch, |
| 62 | + const std::shared_ptr<ngraph::Node>& filters, |
| 63 | + const std::shared_ptr<ngraph::Node>& doutput, const ngraph::Strides strides, |
| 64 | + const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings, |
| 65 | + size_t groups) { |
| 66 | + auto& data_shape = data_batch->get_shape(); |
| 67 | + auto& filter_shape = filters->get_shape(); |
| 68 | + auto& out_shape = doutput->get_shape(); |
| 69 | + ngraph::NodeVector ng_slices; |
| 70 | + |
| 71 | + for (size_t i = 0; i < groups; ++i) { |
| 72 | + size_t channel_step = filter_shape.at(1); |
| 73 | + const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0}; |
| 74 | + const std::vector<size_t> upper_bound{data_shape.at(0), |
| 75 | + (i + 1) * channel_step, |
| 76 | + data_shape.at(2), data_shape.at(3)}; |
| 77 | + auto data_slice = std::make_shared<ngraph::op::Slice>( |
| 78 | + data_batch, lower_bound, upper_bound); |
| 79 | + |
| 80 | + size_t filter_step = data_shape.at(0); |
| 81 | + |
| 82 | + const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0}; |
| 83 | + const std::vector<size_t> filter_upper_bound{ |
| 84 | + (i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2), |
| 85 | + filter_shape.at(3)}; |
| 86 | + auto filter_slice = std::make_shared<ngraph::op::Slice>( |
| 87 | + filters, filter_lower_bound, filter_upper_bound); |
| 88 | + |
| 89 | + const std::vector<size_t> olower_bound{0, i * filter_step, 0, 0}; |
| 90 | + const std::vector<size_t> oupper_bound{out_shape.at(0), |
| 91 | + (i + 1) * filter_step, |
| 92 | + out_shape.at(2), out_shape.at(3)}; |
| 93 | + auto out_slice = std::make_shared<ngraph::op::Slice>(doutput, olower_bound, |
| 94 | + oupper_bound); |
| 95 | + |
| 96 | + auto ng_conv = std::make_shared<ngraph::op::ConvolutionBackpropFilters>( |
| 97 | + data_slice, filter_slice->get_shape(), out_slice, strides, dilations, |
| 98 | + paddings, paddings, ngraph::Strides{1, 1}); |
| 99 | + |
| 100 | + ng_slices.push_back(ng_conv); |
| 101 | + } |
| 102 | + |
| 103 | + size_t concat_axis = 0; |
| 104 | + return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis); |
| 105 | +} |
| 106 | + |
| 107 | +std::shared_ptr<ngraph::Node> GroupedGradConvolutionData( |
| 108 | + const std::shared_ptr<ngraph::Node>& data_batch, |
| 109 | + const std::shared_ptr<ngraph::Node>& filters, |
| 110 | + const std::shared_ptr<ngraph::Node>& doutput, const ngraph::Strides strides, |
| 111 | + const ngraph::Strides dilations, const ngraph::CoordinateDiff& paddings, |
| 112 | + size_t groups) { |
| 113 | + auto& data_shape = data_batch->get_shape(); |
| 114 | + auto& filter_shape = filters->get_shape(); |
| 115 | + auto& out_shape = doutput->get_shape(); |
| 116 | + ngraph::NodeVector ng_slices; |
| 117 | + |
| 118 | + for (size_t i = 0; i < groups; ++i) { |
| 119 | + size_t channel_step = filter_shape.at(1); |
| 120 | + const std::vector<size_t> lower_bound{0, i * channel_step, 0, 0}; |
| 121 | + const std::vector<size_t> upper_bound{data_shape.at(0), |
| 122 | + (i + 1) * channel_step, |
| 123 | + data_shape.at(2), data_shape.at(3)}; |
| 124 | + auto data_slice = std::make_shared<ngraph::op::Slice>( |
| 125 | + data_batch, lower_bound, upper_bound); |
| 126 | + |
| 127 | + size_t filter_step = data_shape.at(0); |
| 128 | + |
| 129 | + const std::vector<size_t> filter_lower_bound{i * filter_step, 0, 0, 0}; |
| 130 | + const std::vector<size_t> filter_upper_bound{ |
| 131 | + (i + 1) * filter_step, filter_shape.at(1), filter_shape.at(2), |
| 132 | + filter_shape.at(3)}; |
| 133 | + auto filter_slice = std::make_shared<ngraph::op::Slice>( |
| 134 | + filters, filter_lower_bound, filter_upper_bound); |
| 135 | + |
| 136 | + const std::vector<size_t> olower_bound{0, i * filter_step, 0, 0}; |
| 137 | + const std::vector<size_t> oupper_bound{out_shape.at(0), |
| 138 | + (i + 1) * filter_step, |
| 139 | + out_shape.at(2), out_shape.at(3)}; |
| 140 | + auto out_slice = std::make_shared<ngraph::op::Slice>(doutput, olower_bound, |
| 141 | + oupper_bound); |
| 142 | + |
| 143 | + auto ng_conv = std::make_shared<ngraph::op::ConvolutionBackpropData>( |
| 144 | + data_slice->get_shape(), filter_slice, out_slice, strides, dilations, |
| 145 | + paddings, paddings, ngraph::Strides{1, 1}); |
| 146 | + ng_slices.push_back(ng_conv); |
| 147 | + } |
| 148 | + |
| 149 | + size_t concat_axis = 1; |
| 150 | + return std::make_shared<ngraph::op::Concat>(ng_slices, concat_axis); |
| 151 | +} |
| 152 | + |
| 153 | +void BuildConv2dNode( |
| 154 | + const std::shared_ptr<paddle::framework::OperatorBase>& op, |
| 155 | + std::shared_ptr< |
| 156 | + std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>> |
| 157 | + ngb_node_map) { |
| 158 | + auto op_attrs = paddle::framework::AttrReader(op->Attrs()); |
| 159 | + auto filters = paddle::platform::GetInputNode(op, "Filter", ngb_node_map); |
| 160 | + auto input = paddle::platform::GetInputNode(op, "Input", ngb_node_map); |
| 161 | + |
| 162 | + std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides"); |
| 163 | + std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings"); |
| 164 | + std::vector<int> dilations = op_attrs.Get<std::vector<int>>("dilations"); |
| 165 | + |
| 166 | + const ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)), |
| 167 | + static_cast<size_t>(strides.at(1))}; |
| 168 | + const ngraph::Strides ng_dilations{static_cast<size_t>(dilations.at(0)), |
| 169 | + static_cast<size_t>(dilations.at(1))}; |
| 170 | + const ngraph::CoordinateDiff ng_paddings{ |
| 171 | + static_cast<std::ptrdiff_t>(paddings.at(0)), |
| 172 | + static_cast<std::ptrdiff_t>(paddings.at(1))}; |
| 173 | + |
| 174 | + int groups = static_cast<size_t>(op_attrs.Get<int>("groups")); |
| 175 | + PADDLE_ENFORCE_GE(groups, 1, "conv groups needs be no less than 1"); |
| 176 | + |
| 177 | + std::shared_ptr<ngraph::Node> result; |
| 178 | + if (groups == 1) { |
| 179 | + result = std::make_shared<ngraph::op::Convolution>( |
| 180 | + input, filters, ng_strides, ng_dilations, ng_paddings, ng_paddings); |
| 181 | + } else { |
| 182 | + result = GroupedConvolution(input, filters, ng_strides, ng_dilations, |
| 183 | + ng_paddings, groups); |
| 184 | + } |
| 185 | + paddle::platform::SetOutputNode(op, "Output", result, ngb_node_map); |
| 186 | +} |
| 187 | + |
| 188 | +void BuildConv2dGradNode( |
| 189 | + const std::shared_ptr<paddle::framework::OperatorBase>& op, |
| 190 | + std::shared_ptr< |
| 191 | + std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>> |
| 192 | + ngb_node_map) { |
| 193 | + auto op_attrs = paddle::framework::AttrReader(op->Attrs()); |
| 194 | + auto filter = paddle::platform::GetInputNode(op, "Filter", ngb_node_map); |
| 195 | + auto input = paddle::platform::GetInputNode(op, "Input", ngb_node_map); |
| 196 | + auto doutput = |
| 197 | + paddle::platform::GetInputNode(op, "Output@GRAD", ngb_node_map); |
| 198 | + |
| 199 | + int groups = op_attrs.Get<int>("groups"); |
| 200 | + std::vector<int> strides = op_attrs.Get<std::vector<int>>("strides"); |
| 201 | + std::vector<int> paddings = op_attrs.Get<std::vector<int>>("paddings"); |
| 202 | + std::vector<int> dilations = op_attrs.Get<std::vector<int>>("dilations"); |
| 203 | + |
| 204 | + const ngraph::Strides ng_strides{static_cast<size_t>(strides.at(0)), |
| 205 | + static_cast<size_t>(strides.at(1))}; |
| 206 | + const ngraph::Strides ng_dilations{static_cast<size_t>(dilations.at(0)), |
| 207 | + static_cast<size_t>(dilations.at(1))}; |
| 208 | + const ngraph::CoordinateDiff ng_paddings{ |
| 209 | + static_cast<std::ptrdiff_t>(paddings.at(0)), |
| 210 | + static_cast<std::ptrdiff_t>(paddings.at(1))}; |
| 211 | + |
| 212 | + std::shared_ptr<ngraph::Node> dfilter; |
| 213 | + std::shared_ptr<ngraph::Node> dinput; |
| 214 | + if (groups == 1) { |
| 215 | + dfilter = std::make_shared<ngraph::op::ConvolutionBackpropFilters>( |
| 216 | + input, filter->get_shape(), doutput, ng_strides, ng_dilations, |
| 217 | + ng_paddings, ng_paddings, ngraph::Strides{1, 1}); |
| 218 | + |
| 219 | + dinput = std::make_shared<ngraph::op::ConvolutionBackpropData>( |
| 220 | + input->get_shape(), filter, doutput, ng_strides, ng_dilations, |
| 221 | + ng_paddings, ng_paddings, ngraph::Strides{1, 1}); |
| 222 | + |
| 223 | + } else { |
| 224 | + dfilter = GroupedGradConvolutionFilter(input, filter, doutput, ng_strides, |
| 225 | + ng_dilations, ng_paddings, groups); |
| 226 | + dinput = GroupedGradConvolutionData(input, filter, doutput, ng_strides, |
| 227 | + ng_dilations, ng_paddings, groups); |
| 228 | + } |
| 229 | + |
| 230 | + paddle::platform::SetOutputNode(op, "Filter@GRAD", dfilter, ngb_node_map); |
| 231 | + paddle::platform::SetOutputNode(op, "Input@GRAD", dinput, ngb_node_map); |
| 232 | +} |
| 233 | +} // namespace ngraphs |
| 234 | +} // namespace operators |
| 235 | +} // namespace paddle |
0 commit comments