@@ -12,11 +12,11 @@ Machine:
12
12
13
13
System: CentOS release 6.3 (Final), Docker 1.12.1.
14
14
15
- PaddlePaddle: paddlepaddle/paddle: latest (TODO: will rerun after 0.11.0)
16
-
17
- - MKL-DNN tag v0.10
18
- - MKLML 2018.0.20170720
15
+ PaddlePaddle: paddlepaddle/paddle: latest (for MKLML and MKL-DNN), paddlepaddle/paddle: latest-openblas (for OpenBLAS)
16
+ - MKL-DNN tag v0.11
17
+ - MKLML 2018.0.1.20171007
19
18
- OpenBLAS v0.2.20
19
+ (TODO: will rerun after 0.11.0)
20
20
21
21
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
22
22
@@ -31,9 +31,9 @@ Input image size - 3 * 224 * 224, Time: images/second
31
31
32
32
| BatchSize | 64 | 128 | 256 |
33
33
| --------------| -------| -----| --------|
34
- | OpenBLAS | 7.82 | 8.62 | 10.34 |
35
- | MKLML | 11.02 | 12.86 | 15.33 |
36
- | MKL-DNN | 27.69 | 28.8 | 29.27 |
34
+ | OpenBLAS | 7.80 | 9.00 | 10.80 |
35
+ | MKLML | 12.12 | 13.70 | 16.18 |
36
+ | MKL-DNN | 28.46 | 29.83 | 30.44 |
37
37
38
38
39
39
chart on batch size 128
43
43
44
44
| BatchSize | 64 | 128 | 256 |
45
45
| --------------| -------| ------| -------|
46
- | OpenBLAS | 22.90 | 23.10 | 25.59 |
47
- | MKLML | 29.81 | 30.18 | 32.77 |
48
- | MKL-DNN | 80.49 | 82.89 | 83.13 |
46
+ | OpenBLAS | 25.22 | 25.68 | 27.12 |
47
+ | MKLML | 32.52 | 31.89 | 33.12 |
48
+ | MKL-DNN | 81.69 | 82.35 | 84.08 |
49
49
50
50
51
51
chart on batch size 128
0 commit comments