@@ -537,7 +537,7 @@ def _backward_step_helper(self, micro_step):
537
537
538
538
return input_tensor_grad
539
539
540
- def interleave_pipeline (
540
+ def forward_backward_pipeline (
541
541
self , data , scaler , forward_only = False , compute_loss = True
542
542
):
543
543
# use interleave scheduling strategy.
@@ -766,7 +766,7 @@ def interleave_pipeline(
766
766
def train_batch (self , data , optimizer , lr_scheduler = None , scaler = None ):
767
767
data = self ._prepare_training (data , optimizer , lr_scheduler )
768
768
# interleave scheduler for pipeline parallel
769
- train_loss = self .interleave_pipeline (data , scaler )
769
+ train_loss = self .forward_backward_pipeline (data , scaler )
770
770
771
771
# optimizer
772
772
with paddle .amp .auto_cast (enable = False ):
@@ -781,4 +781,4 @@ def eval_batch(self, data, compute_loss=False):
781
781
self ._layers .eval ()
782
782
self ._compute_loss = compute_loss
783
783
784
- return self .interleave_pipeline (data , None , forward_only = True )
784
+ return self .forward_backward_pipeline (data , None , forward_only = True )
0 commit comments