|
| 1 | +# edit-mode: -*- python -*- |
| 2 | + |
| 3 | +# Copyright (c) 2016 Baidu, Inc. All Rights Reserved |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +""" |
| 18 | +This configuration is a demonstration of how to implement the stacked LSTM |
| 19 | +with residual connections, i.e. an LSTM layer takes the sum of the hidden states |
| 20 | +and inputs of the previous LSTM layer instead of only the hidden states. |
| 21 | +This architecture is from: |
| 22 | +Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, |
| 23 | +Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, |
| 24 | +Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, |
| 25 | +Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, |
| 26 | +George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, |
| 27 | +Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, Jeffrey Dean. 2016. |
| 28 | +Google's Neural Machine Translation System: Bridging the Gap between Human and |
| 29 | +Machine Translation. In arXiv https://arxiv.org/pdf/1609.08144v2.pdf |
| 30 | +Different from the architecture described in the paper, we use a stack single |
| 31 | +direction LSTM layers as the first layer instead of bi-directional LSTM. Also, |
| 32 | +since this is a demo code, to reduce computation time, we stacked 4 layers |
| 33 | +instead of 8 layers. |
| 34 | +""" |
| 35 | + |
| 36 | +from paddle.trainer_config_helpers import * |
| 37 | + |
| 38 | +dict_file = "./data/dict.txt" |
| 39 | +word_dict = dict() |
| 40 | +with open(dict_file, 'r') as f: |
| 41 | + for i, line in enumerate(f): |
| 42 | + w = line.strip().split()[0] |
| 43 | + word_dict[w] = i |
| 44 | + |
| 45 | +is_predict = get_config_arg('is_predict', bool, False) |
| 46 | +trn = 'data/train.list' if not is_predict else None |
| 47 | +tst = 'data/test.list' if not is_predict else 'data/pred.list' |
| 48 | +process = 'process' if not is_predict else 'process_predict' |
| 49 | +define_py_data_sources2(train_list=trn, |
| 50 | + test_list=tst, |
| 51 | + module="dataprovider_emb", |
| 52 | + obj=process, |
| 53 | + args={"dictionary": word_dict}) |
| 54 | + |
| 55 | +batch_size = 128 if not is_predict else 1 |
| 56 | +settings( |
| 57 | + batch_size=batch_size, |
| 58 | + learning_rate=2e-3, |
| 59 | + learning_method=AdamOptimizer(), |
| 60 | + regularization=L2Regularization(8e-4), |
| 61 | + gradient_clipping_threshold=25 |
| 62 | +) |
| 63 | + |
| 64 | +bias_attr = ParamAttr(initial_std=0.,l2_rate=0.) |
| 65 | + |
| 66 | +data = data_layer(name="word", size=len(word_dict)) |
| 67 | +emb = embedding_layer(input=data, size=128) |
| 68 | +lstm = simple_lstm(input=emb, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1)) |
| 69 | + |
| 70 | +previous_input, previous_hidden_state = emb, lstm |
| 71 | + |
| 72 | +for i in range(3): |
| 73 | + # The input to the current layer is the sum of the hidden state |
| 74 | + # and input of the previous layer. |
| 75 | + current_input = addto_layer(input=[previous_input, previous_hidden_state]) |
| 76 | + hidden_state = simple_lstm(input=current_input, size=128, |
| 77 | + lstm_cell_attr=ExtraAttr(drop_rate=0.1)) |
| 78 | + previous_input, previous_hidden_state = current_input, hidden_state |
| 79 | + |
| 80 | +lstm = previous_hidden_state |
| 81 | + |
| 82 | +lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling()) |
| 83 | +output = fc_layer(input=lstm_last, size=2, |
| 84 | + bias_attr=bias_attr, |
| 85 | + act=SoftmaxActivation()) |
| 86 | + |
| 87 | + |
| 88 | +if is_predict: |
| 89 | + maxid = maxid_layer(output) |
| 90 | + outputs([maxid, output]) |
| 91 | +else: |
| 92 | + label = data_layer(name="label", size=2) |
| 93 | + cls = classification_cost(input=output, label=label) |
| 94 | + outputs(cls) |
0 commit comments