Skip to content

Commit 4dbc018

Browse files
wzzjuluotao1
authored andcommitted
Nlp dam (#14248)
* add dam test * update fuse_statis * use separated dam model. * Revert "use separated dam model." This reverts commit 13e775c. * test=develop * modify the cmake file about infer test, test=develop. * remove one comment, test=develop.
1 parent ff9e531 commit 4dbc018

File tree

3 files changed

+235
-5
lines changed

3 files changed

+235
-5
lines changed

paddle/fluid/inference/tests/api/CMakeLists.txt

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,15 @@ set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2")
2929
download_model_and_data(${RNN2_INSTALL_DIR} "rnn2_model.tar.gz" "rnn2_data.txt.tar.gz")
3030
inference_analysis_api_test(test_analyzer_rnn2 ${RNN2_INSTALL_DIR} analyzer_rnn2_tester.cc)
3131

32+
# DAM
33+
set(DAM_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/dam")
34+
download_model_and_data(${DAM_INSTALL_DIR} "DAM_model.tar.gz" "DAM_data.txt.tar.gz")
35+
inference_analysis_test(test_analyzer_dam SRCS analyzer_dam_tester.cc
36+
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} ARGS
37+
--infer_model=${DAM_INSTALL_DIR}/model
38+
--infer_data=${DAM_INSTALL_DIR}/data.txt
39+
--use_analysis=0)
40+
3241
# chinese_ner
3342
set(CHINESE_NER_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/chinese_ner")
3443
download_model_and_data(${CHINESE_NER_INSTALL_DIR} "chinese_ner_model.tar.gz" "chinese_ner-data.txt.tar.gz")
Lines changed: 224 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,224 @@
1+
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
//
3+
// Licensed under the Apache License, Version 2.0 (the "License");
4+
// you may not use this file except in compliance with the License.
5+
// You may obtain a copy of the License at
6+
//
7+
// http://www.apache.org/licenses/LICENSE-2.0
8+
//
9+
// Unless required by applicable law or agreed to in writing, software
10+
// distributed under the License is distributed on an "AS IS" BASIS,
11+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
// See the License for the specific language governing permissions and
13+
// limitations under the License.
14+
15+
#include "paddle/fluid/inference/tests/api/tester_helper.h"
16+
17+
namespace paddle {
18+
namespace inference {
19+
using contrib::AnalysisConfig;
20+
#define MAX_TURN_NUM 9
21+
#define MAX_TURN_LEN 50
22+
static std::vector<float> result_data;
23+
24+
struct DataRecord {
25+
std::vector<std::vector<int64_t>>
26+
turns[MAX_TURN_NUM]; // turns data : MAX_TURN_NUM
27+
std::vector<std::vector<float>>
28+
turns_mask[MAX_TURN_NUM]; // turns mask data : MAX_TURN_NUM
29+
std::vector<std::vector<int64_t>> response; // response data : 1
30+
std::vector<std::vector<float>> response_mask; // response mask data : 1
31+
size_t batch_iter{0};
32+
size_t batch_size{1};
33+
size_t num_samples; // total number of samples
34+
DataRecord() = default;
35+
explicit DataRecord(const std::string &path, int batch_size = 1)
36+
: batch_size(batch_size) {
37+
Load(path);
38+
}
39+
DataRecord NextBatch() {
40+
DataRecord data;
41+
size_t batch_end = batch_iter + batch_size;
42+
// NOTE skip the final batch, if no enough data is provided.
43+
if (batch_end <= response.size()) {
44+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
45+
data.turns[i].assign(turns[i].begin() + batch_iter,
46+
turns[i].begin() + batch_end);
47+
}
48+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
49+
data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
50+
turns_mask[i].begin() + batch_end);
51+
}
52+
data.response.assign(response.begin() + batch_iter,
53+
response.begin() + batch_end);
54+
data.response_mask.assign(response_mask.begin() + batch_iter,
55+
response_mask.begin() + batch_end);
56+
CHECK(!data.response.empty());
57+
CHECK(!data.response_mask.empty());
58+
CHECK_EQ(data.response.size(), data.response_mask.size());
59+
}
60+
batch_iter += batch_size;
61+
return data;
62+
}
63+
void Load(const std::string &path) {
64+
std::ifstream file(path);
65+
std::string line;
66+
size_t num_lines = 0;
67+
result_data.clear();
68+
while (std::getline(file, line)) {
69+
num_lines++;
70+
std::vector<std::string> data;
71+
split(line, ',', &data);
72+
CHECK_EQ(data.size(), 2 * MAX_TURN_NUM + 3);
73+
// load turn data
74+
std::vector<int64_t> turns_tmp[MAX_TURN_NUM];
75+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
76+
split_to_int64(data[i], ' ', &turns_tmp[i]);
77+
turns[i].push_back(std::move(turns_tmp[i]));
78+
}
79+
// load turn_mask data
80+
std::vector<float> turns_mask_tmp[MAX_TURN_NUM];
81+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
82+
split_to_float(data[MAX_TURN_NUM + i], ' ', &turns_mask_tmp[i]);
83+
turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
84+
}
85+
// load response data
86+
std::vector<int64_t> response_tmp;
87+
split_to_int64(data[2 * MAX_TURN_NUM], ' ', &response_tmp);
88+
response.push_back(std::move(response_tmp));
89+
// load response_mask data
90+
std::vector<float> response_mask_tmp;
91+
split_to_float(data[2 * MAX_TURN_NUM + 1], ' ', &response_mask_tmp);
92+
response_mask.push_back(std::move(response_mask_tmp));
93+
// load result data
94+
float result_tmp;
95+
result_tmp = std::stof(data[2 * MAX_TURN_NUM + 2]);
96+
result_data.push_back(result_tmp);
97+
}
98+
num_samples = num_lines;
99+
}
100+
};
101+
102+
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
103+
int batch_size) {
104+
PaddleTensor turns_tensor[MAX_TURN_NUM];
105+
PaddleTensor turns_mask_tensor[MAX_TURN_NUM];
106+
PaddleTensor response_tensor;
107+
PaddleTensor response_mask_tensor;
108+
std::string turn_pre = "turn_";
109+
std::string turn_mask_pre = "turn_mask_";
110+
111+
auto one_batch = data->NextBatch();
112+
int size = one_batch.response[0].size();
113+
CHECK_EQ(size, MAX_TURN_LEN);
114+
// turn tensor assignment
115+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
116+
turns_tensor[i].name = turn_pre + std::to_string(i);
117+
turns_tensor[i].shape.assign({batch_size, size, 1});
118+
turns_tensor[i].dtype = PaddleDType::INT64;
119+
TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
120+
}
121+
// turn mask tensor assignment
122+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
123+
turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
124+
turns_mask_tensor[i].shape.assign({batch_size, size, 1});
125+
turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
126+
TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
127+
}
128+
// response tensor assignment
129+
response_tensor.name = "response";
130+
response_tensor.shape.assign({batch_size, size, 1});
131+
response_tensor.dtype = PaddleDType::INT64;
132+
TensorAssignData<int64_t>(&response_tensor, one_batch.response);
133+
// response mask tensor assignment
134+
response_mask_tensor.name = "response_mask";
135+
response_mask_tensor.shape.assign({batch_size, size, 1});
136+
response_mask_tensor.dtype = PaddleDType::FLOAT32;
137+
TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);
138+
139+
// Set inputs.
140+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
141+
input_slots->push_back(std::move(turns_tensor[i]));
142+
}
143+
for (int i = 0; i < MAX_TURN_NUM; ++i) {
144+
input_slots->push_back(std::move(turns_mask_tensor[i]));
145+
}
146+
input_slots->push_back(std::move(response_tensor));
147+
input_slots->push_back(std::move(response_mask_tensor));
148+
}
149+
150+
void SetConfig(contrib::AnalysisConfig *cfg) {
151+
cfg->prog_file = FLAGS_infer_model + "/__model__";
152+
cfg->param_file = FLAGS_infer_model + "/param";
153+
cfg->use_gpu = false;
154+
cfg->device = 0;
155+
cfg->specify_input_name = true;
156+
cfg->enable_ir_optim = true;
157+
}
158+
159+
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
160+
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
161+
std::vector<PaddleTensor> input_slots;
162+
int test_batch_num =
163+
FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
164+
LOG(INFO) << "The number of samples to be test: "
165+
<< test_batch_num * FLAGS_batch_size;
166+
for (int bid = 0; bid < test_batch_num; ++bid) {
167+
input_slots.clear();
168+
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
169+
(*inputs).emplace_back(input_slots);
170+
}
171+
}
172+
173+
// Easy for profiling independently.
174+
TEST(Analyzer_dam, profile) {
175+
contrib::AnalysisConfig cfg;
176+
SetConfig(&cfg);
177+
178+
std::vector<PaddleTensor> outputs;
179+
std::vector<std::vector<PaddleTensor>> input_slots_all;
180+
SetInput(&input_slots_all);
181+
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
182+
183+
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
184+
PADDLE_ENFORCE_GT(outputs.size(), 0);
185+
size_t size = GetSize(outputs[0]);
186+
PADDLE_ENFORCE_GT(size, 0);
187+
float *result = static_cast<float *>(outputs[0].data.data());
188+
for (size_t i = 0; i < size; i++) {
189+
EXPECT_NEAR(result[i], result_data[i], 1e-3);
190+
}
191+
}
192+
}
193+
194+
// Check the fuse status
195+
TEST(Analyzer_dam, fuse_statis) {
196+
contrib::AnalysisConfig cfg;
197+
SetConfig(&cfg);
198+
199+
if (FLAGS_use_analysis) {
200+
int num_ops;
201+
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
202+
auto fuse_statis = GetFuseStatis(
203+
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
204+
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
205+
EXPECT_EQ(fuse_statis.at("fc_fuse"), 317);
206+
EXPECT_EQ(num_ops, 2020);
207+
}
208+
}
209+
210+
// Compare result of NativeConfig and AnalysisConfig
211+
TEST(Analyzer_dam, compare) {
212+
contrib::AnalysisConfig cfg;
213+
SetConfig(&cfg);
214+
215+
std::vector<std::vector<PaddleTensor>> input_slots_all;
216+
SetInput(&input_slots_all);
217+
218+
if (FLAGS_use_analysis) {
219+
CompareNativeAndAnalysis(cfg, input_slots_all);
220+
}
221+
}
222+
223+
} // namespace inference
224+
} // namespace paddle

paddle/fluid/inference/tests/api/analyzer_ner_tester.cc

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,6 @@ using contrib::AnalysisConfig;
2020

2121
struct DataRecord {
2222
std::vector<std::vector<int64_t>> word_data_all, mention_data_all;
23-
std::vector<std::vector<int64_t>> rnn_word_datas, rnn_mention_datas;
2423
std::vector<size_t> lod; // two inputs have the same lod info.
2524
size_t batch_iter{0};
2625
size_t batch_size{1};
@@ -45,8 +44,6 @@ struct DataRecord {
4544
CHECK(!data.mention_data_all.empty());
4645
CHECK_EQ(data.word_data_all.size(), data.mention_data_all.size());
4746
for (size_t j = 0; j < data.word_data_all.size(); j++) {
48-
data.rnn_word_datas.push_back(data.word_data_all[j]);
49-
data.rnn_mention_datas.push_back(data.mention_data_all[j]);
5047
// calculate lod
5148
data.lod.push_back(data.lod.back() + data.word_data_all[j].size());
5249
}
@@ -87,8 +84,8 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
8784
lod_mention_tensor.shape.assign({size, 1});
8885
lod_mention_tensor.lod.assign({one_batch.lod});
8986
// assign data
90-
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.rnn_word_datas);
91-
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.rnn_mention_datas);
87+
TensorAssignData<int64_t>(&lod_word_tensor, one_batch.word_data_all);
88+
TensorAssignData<int64_t>(&lod_mention_tensor, one_batch.mention_data_all);
9289
// Set inputs.
9390
input_slots->assign({lod_word_tensor, lod_mention_tensor});
9491
for (auto &tensor : *input_slots) {

0 commit comments

Comments
 (0)