Skip to content

Commit 55a7b98

Browse files
committed
Add DeepCF model
test=develop
1 parent 1544443 commit 55a7b98

File tree

2 files changed

+197
-1
lines changed

2 files changed

+197
-1
lines changed
Lines changed: 196 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,196 @@
1+
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
import unittest
16+
import numpy as np
17+
import random
18+
import sys
19+
20+
import paddle
21+
import paddle.fluid as fluid
22+
import paddle.fluid.core as core
23+
from test_imperative_base import new_program_scope
24+
from paddle.fluid.imperative.base import to_variable
25+
26+
NUM_USERS = 100
27+
NUM_ITEMS = 1000
28+
29+
BATCH_SIZE = 32
30+
NUM_BATCHES = 2
31+
32+
33+
class MLP(fluid.imperative.Layer):
34+
def __init__(self, name_scope):
35+
super(MLP, self).__init__(name_scope)
36+
self._user_latent = fluid.imperative.FC(self.full_name(), 256)
37+
self._item_latent = fluid.imperative.FC(self.full_name(), 256)
38+
39+
self._user_layers = []
40+
self._item_layers = []
41+
self._hid_sizes = [128, 64]
42+
for i in range(len(self._hid_sizes)):
43+
self._user_layers.append(
44+
self.add_sublayer(
45+
'user_layer_%d' % i,
46+
fluid.imperative.FC(
47+
self.full_name(), self._hid_sizes[i], act='relu')))
48+
self._item_layers.append(
49+
self.add_sublayer(
50+
'item_layer_%d' % i,
51+
fluid.imperative.FC(
52+
self.full_name(), self._hid_sizes[i], act='relu')))
53+
54+
def forward(self, users, items):
55+
users = self._user_latent(users)
56+
items = self._item_latent(items)
57+
58+
for ul, il in zip(self._user_layers, self._item_layers):
59+
users = ul(users)
60+
items = il(items)
61+
return fluid.layers.elementwise_mul(users, items)
62+
63+
64+
class DMF(fluid.imperative.Layer):
65+
def __init__(self, name_scope):
66+
super(DMF, self).__init__(name_scope)
67+
self._user_latent = fluid.imperative.FC(self.full_name(), 256)
68+
self._item_latent = fluid.imperative.FC(self.full_name(), 256)
69+
self._match_layers = []
70+
self._hid_sizes = [128, 64]
71+
for i in range(len(self._hid_sizes)):
72+
self._match_layers.append(
73+
self.add_sublayer(
74+
'match_layer_%d' % i,
75+
fluid.imperative.FC(
76+
self.full_name(), self._hid_sizes[i], act='relu')))
77+
self._mat
78+
79+
def forward(self, users, items):
80+
users = self._user_latent(users)
81+
items = self._item_latent(items)
82+
match_vec = fluid.layers.concat(
83+
[users, items], axis=len(users.shape) - 1)
84+
for l in self._match_layers:
85+
match_vec = l(match_vec)
86+
return match_vec
87+
88+
89+
class DeepCF(fluid.imperative.Layer):
90+
def __init__(self, name_scope):
91+
super(DeepCF, self).__init__(name_scope)
92+
93+
self._user_emb = fluid.imperative.Embedding(self.full_name(),
94+
[NUM_USERS, 256])
95+
self._item_emb = fluid.imperative.Embedding(self.full_name(),
96+
[NUM_ITEMS, 256])
97+
98+
self._mlp = MLP(self.full_name())
99+
self._dmf = DMF(self.full_name())
100+
self._match_fc = fluid.imperative.FC(self.full_name(), 1, act='sigmoid')
101+
102+
def forward(self, users, items):
103+
users_emb = self._user_emb(users)
104+
items_emb = self._item_emb(items)
105+
106+
mlp_predictive = self._mlp(users_emb, items_emb)
107+
dmf_predictive = self._dmf(users_emb, items_emb)
108+
predictive = fluid.layers.concat(
109+
[mlp_predictive, dmf_predictive],
110+
axis=len(mlp_predictive.shape) - 1)
111+
prediction = self._match_fc(predictive)
112+
return prediction
113+
114+
115+
def get_data():
116+
user_ids = []
117+
item_ids = []
118+
labels = []
119+
for uid in range(NUM_USERS):
120+
for iid in range(NUM_ITEMS):
121+
# 10% positive
122+
label = float(random.randint(1, 10) == 1)
123+
user_ids.append(uid)
124+
item_ids.append(iid)
125+
labels.append(label)
126+
indices = np.arange(NUM_USERS * NUM_ITEMS)
127+
np.random.shuffle(indices)
128+
users_np = np.array(user_ids, dtype=np.int64)[indices]
129+
items_np = np.array(item_ids, dtype=np.int64)[indices]
130+
labels_np = np.array(labels, dtype=np.float32)[indices]
131+
return np.expand_dims(users_np, -1), \
132+
np.expand_dims(items_np, -1), \
133+
np.expand_dims(labels_np, -1)
134+
135+
136+
class TestImperativeDeepCF(unittest.TestCase):
137+
def test_gan_float32(self):
138+
seed = 90
139+
users_np, items_np, labels_np = get_data()
140+
141+
startup = fluid.Program()
142+
startup.random_seed = seed
143+
main = fluid.Program()
144+
main.random_seed = seed
145+
146+
scope = fluid.core.Scope()
147+
with new_program_scope(main=main, startup=startup, scope=scope):
148+
users = fluid.layers.data('users', [1], dtype='int64')
149+
items = fluid.layers.data('items', [1], dtype='int64')
150+
labels = fluid.layers.data('labels', [1], dtype='float32')
151+
152+
deepcf = DeepCF('deepcf')
153+
prediction = deepcf(users, items)
154+
loss = fluid.layers.reduce_sum(
155+
fluid.layers.log_loss(prediction, labels))
156+
adam = fluid.optimizer.AdamOptimizer(0.01)
157+
adam.minimize(loss)
158+
159+
exe = fluid.Executor(fluid.CPUPlace(
160+
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
161+
exe.run(startup)
162+
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
163+
static_loss = exe.run(
164+
main,
165+
feed={
166+
users.name: users_np[slice:slice + BATCH_SIZE],
167+
items.name: items_np[slice:slice + BATCH_SIZE],
168+
labels.name: labels_np[slice:slice + BATCH_SIZE]
169+
},
170+
fetch_list=[loss])[0]
171+
sys.stderr.write('static loss %s\n' % static_loss)
172+
173+
with fluid.imperative.guard():
174+
fluid.default_startup_program().random_seed = seed
175+
fluid.default_main_program().random_seed = seed
176+
177+
deepcf = DeepCF('deepcf')
178+
for slice in range(0, BATCH_SIZE * NUM_BATCHES, BATCH_SIZE):
179+
prediction = deepcf(
180+
to_variable(users_np[slice:slice + BATCH_SIZE]),
181+
to_variable(items_np[slice:slice + BATCH_SIZE]))
182+
loss = fluid.layers.reduce_sum(
183+
fluid.layers.log_loss(prediction,
184+
to_variable(labels_np[slice:slice +
185+
BATCH_SIZE])))
186+
loss._backward()
187+
adam = fluid.optimizer.AdamOptimizer(0.01)
188+
adam.minimize(loss)
189+
deepcf.clear_gradients()
190+
dy_loss = loss._numpy()
191+
192+
self.assertEqual(static_loss, dy_loss)
193+
194+
195+
if __name__ == '__main__':
196+
unittest.main()

python/paddle/fluid/tests/unittests/test_imperative_gan.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ def forward(self, inputs):
5151
return self._fc3(x)
5252

5353

54-
class TestImperativeMnist(unittest.TestCase):
54+
class TestImperativeGAN(unittest.TestCase):
5555
def test_gan_float32(self):
5656
seed = 90
5757

0 commit comments

Comments
 (0)