Skip to content

Commit 58d5be1

Browse files
committed
update docker tag, add translate for jupyter notebook
1 parent 438c314 commit 58d5be1

File tree

2 files changed

+47
-27
lines changed

2 files changed

+47
-27
lines changed

doc/getstarted/build_and_install/docker_install_cn.rst

Lines changed: 26 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -56,6 +56,26 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do
5656
cd /paddle/build
5757
ctest
5858
59+
4. 在Docker容器中运行PaddlePaddle书籍
60+
61+
Jupyter Notebook是一个开源的web程序,大家可以通过它制作和分享带有代码、公式、图表、文字的交互式文档。用户可以通过网页浏览文档。
62+
63+
PaddlePaddle书籍是为用户和开发者制作的一个交互式的Jupyter Nodebook。
64+
如果您想要更深入了解deep learning,PaddlePaddle书籍一定是您最好的选择。
65+
66+
当您进入容器内之后,只用运行以下命令:
67+
68+
.. code-block:: bash
69+
70+
jupyter notebook
71+
72+
然后在浏览器中输入以下网址:
73+
74+
.. code-block:: text
75+
76+
http://localhost:8888/
77+
78+
就这么简单,享受您的旅程!
5979

6080
纯CPU和GPU的docker镜像
6181
----------------------
@@ -64,20 +84,20 @@ PaddlePaddle目前唯一官方支持的运行的方式是Docker容器。因为Do
6484

6585
.. code-block:: bash
6686
67-
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
68-
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
87+
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
88+
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
6989
7090
以交互容器方式运行纯CPU的镜像:
7191

7292
.. code-block:: bash
7393
74-
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
94+
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
7595
7696
或者,可以以后台进程方式运行容器:
7797

7898
.. code-block:: bash
7999
80-
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
100+
docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu
81101
82102
然后用密码 :code:`root` SSH进入容器:
83103

@@ -94,7 +114,7 @@ SSH方式的一个优点是我们可以从多个终端进入容器。比如,
94114
95115
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
96116
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
97-
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
117+
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
98118
99119
100120
非AVX镜像
@@ -128,7 +148,7 @@ Paddle的Docker镜像带有一个通过 `woboq code browser
128148

129149
.. code-block:: bash
130150
131-
docker run -d --name paddle-cpu-doc paddle:cpu
151+
docker run -d --name paddle-cpu-doc paddle:0.10.0rc1-cpu
132152
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
133153
134154
接着我们就能够打开浏览器在 http://localhost:8088/paddle/ 浏览代码。

doc/getstarted/build_and_install/docker_install_en.rst

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -84,27 +84,27 @@ Windows -- in a consistent way.
8484
8585
4. Run PaddlePaddle Book under Docker Container
8686

87-
The Jupyter Notebook is an open-source web application that allows
88-
you to create and share documents that contain live code, equations,
89-
visualizations and explanatory text in a single browser.
87+
The Jupyter Notebook is an open-source web application that allows
88+
you to create and share documents that contain live code, equations,
89+
visualizations and explanatory text in a single browser.
9090

91-
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
92-
We already exposed port 8888 for this book. If you want to
93-
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
91+
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
92+
We already exposed port 8888 for this book. If you want to
93+
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
9494

95-
Once you are inside the container, simply issue the command:
95+
Once you are inside the container, simply issue the command:
9696

97-
.. code-block:: bash
98-
99-
jupyter notebook
100-
101-
Then, you would back and paste the address into the local browser:
97+
.. code-block:: bash
98+
99+
jupyter notebook
102100
103-
.. code-block:: text
101+
Then, you would back and paste the address into the local browser:
102+
103+
.. code-block:: text
104104
105-
http://localhost:8888/
105+
http://localhost:8888/
106106
107-
That's all. Enjoy your journey!
107+
That's all. Enjoy your journey!
108108

109109
CPU-only and GPU Images
110110
-----------------------
@@ -116,21 +116,21 @@ automatically runs the following commands:
116116

117117
.. code-block:: bash
118118
119-
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
120-
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
119+
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
120+
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
121121
122122
123123
To run the CPU-only image as an interactive container:
124124

125125
.. code-block:: bash
126126
127-
docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
127+
docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
128128
129129
or, we can run it as a daemon container
130130

131131
.. code-block:: bash
132132
133-
docker run -d -p 2202:22 paddledev/paddle:cpu-latest
133+
docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu
134134
135135
and SSH to this container using password :code:`root`:
136136

@@ -152,7 +152,7 @@ to install CUDA driver and let Docker knows about it:
152152
153153
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
154154
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
155-
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
155+
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
156156
157157
158158
Non-AVX Images
@@ -194,7 +194,7 @@ container:
194194

195195
.. code-block:: bash
196196
197-
docker run -d --name paddle-cpu-doc paddle:cpu
197+
docker run -d --name paddle-cpu-doc paddle:0.10.0rc1-cpu
198198
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
199199
200200

0 commit comments

Comments
 (0)