@@ -84,27 +84,27 @@ Windows -- in a consistent way.
84
84
85
85
4. Run PaddlePaddle Book under Docker Container
86
86
87
- The Jupyter Notebook is an open-source web application that allows
88
- you to create and share documents that contain live code, equations,
89
- visualizations and explanatory text in a single browser.
87
+ The Jupyter Notebook is an open-source web application that allows
88
+ you to create and share documents that contain live code, equations,
89
+ visualizations and explanatory text in a single browser.
90
90
91
- PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
92
- We already exposed port 8888 for this book. If you want to
93
- dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
91
+ PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
92
+ We already exposed port 8888 for this book. If you want to
93
+ dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
94
94
95
- Once you are inside the container, simply issue the command:
95
+ Once you are inside the container, simply issue the command:
96
96
97
- .. code-block :: bash
98
-
99
- jupyter notebook
100
-
101
- Then, you would back and paste the address into the local browser:
97
+ .. code-block :: bash
98
+
99
+ jupyter notebook
102
100
103
- .. code-block :: text
101
+ Then, you would back and paste the address into the local browser:
102
+
103
+ .. code-block :: text
104
104
105
- http://localhost:8888/
105
+ http://localhost:8888/
106
106
107
- That's all. Enjoy your journey!
107
+ That's all. Enjoy your journey!
108
108
109
109
CPU-only and GPU Images
110
110
-----------------------
@@ -116,21 +116,21 @@ automatically runs the following commands:
116
116
117
117
.. code-block :: bash
118
118
119
- docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
120
- docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
119
+ docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile --build-arg BUILD_AND_INSTALL=ON .
120
+ docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu --build-arg BUILD_AND_INSTALL=ON .
121
121
122
122
123
123
To run the CPU-only image as an interactive container:
124
124
125
125
.. code-block :: bash
126
126
127
- docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
127
+ docker run -it --rm paddledev/paddle:0.10.0rc1-cpu /bin/bash
128
128
129
129
or, we can run it as a daemon container
130
130
131
131
.. code-block :: bash
132
132
133
- docker run -d -p 2202:22 paddledev/paddle:cpu-latest
133
+ docker run -d -p 2202:22 paddledev/paddle:0.10.0rc1-cpu
134
134
135
135
and SSH to this container using password :code: `root `:
136
136
@@ -152,7 +152,7 @@ to install CUDA driver and let Docker knows about it:
152
152
153
153
export CUDA_SO=" $( \l s /usr/lib64/libcuda* | xargs -I{} echo ' -v {}:{}' ) $( \l s /usr/lib64/libnvidia* | xargs -I{} echo ' -v {}:{}' ) "
154
154
export DEVICES=$( \l s /dev/nvidia* | xargs -I{} echo ' --device {}:{}' )
155
- docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
155
+ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:0.10.0rc1-gpu
156
156
157
157
158
158
Non-AVX Images
@@ -194,7 +194,7 @@ container:
194
194
195
195
.. code-block :: bash
196
196
197
- docker run -d --name paddle-cpu-doc paddle:cpu
197
+ docker run -d --name paddle-cpu-doc paddle:0.10.0rc1- cpu
198
198
docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
199
199
200
200
0 commit comments