1
1
import paddle .v2 as paddle
2
+ import gzip
2
3
3
4
4
5
def softmax_regression (img ):
@@ -71,7 +72,11 @@ def main():
71
72
72
73
cost = paddle .layer .classification_cost (input = predict , label = label )
73
74
74
- parameters = paddle .parameters .create (cost )
75
+ try :
76
+ with gzip .open ('params.tar.gz' , 'r' ) as f :
77
+ parameters = paddle .parameters .Parameters .from_tar (f )
78
+ except IOError :
79
+ parameters = paddle .parameters .create (cost )
75
80
76
81
optimizer = paddle .optimizer .Momentum (
77
82
learning_rate = 0.1 / 128.0 ,
@@ -86,10 +91,18 @@ def main():
86
91
87
92
def event_handler (event ):
88
93
if isinstance (event , paddle .event .EndIteration ):
89
- if event .batch_id % 100 == 0 :
90
- print "Pass %d, Batch %d, Cost %f, %s" % (
91
- event .pass_id , event .batch_id , event .cost , event .metrics )
92
- if isinstance (event , paddle .event .EndPass ):
94
+ if event .batch_id % 1000 == 0 :
95
+ result = trainer .test (reader = paddle .batch (
96
+ paddle .dataset .mnist .test (), batch_size = 256 ))
97
+
98
+ print "Pass %d, Batch %d, Cost %f, %s, Testing metrics %s" % (
99
+ event .pass_id , event .batch_id , event .cost , event .metrics ,
100
+ result .metrics )
101
+
102
+ with gzip .open ('params.tar.gz' , 'w' ) as f :
103
+ parameters .to_tar (f )
104
+
105
+ elif isinstance (event , paddle .event .EndPass ):
93
106
result = trainer .test (reader = paddle .batch (
94
107
paddle .dataset .mnist .test (), batch_size = 128 ))
95
108
print "Test with Pass %d, Cost %f, %s\n " % (
0 commit comments