Skip to content

Commit 5bfdefa

Browse files
committed
Merge branch 'Pdv' into samplingIdOp
2 parents b30bdde + 88a607c commit 5bfdefa

31 files changed

+298
-161
lines changed

doc/fluid/howto/optimization/timeline_cn.md

Lines changed: 13 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,27 @@
11
# 如何使用timeline工具做性能分析
22

3-
1. 在训练的主循环外加上`with profiler.profiler(...)`。运行之后,代码会在`/tmp/profile`目录下生成一个profile的记录文件。
3+
1. 在训练的主循环外加上`profiler.start_profiler(...)``profiler.stop_profiler(...)`。运行之后,代码会在`/tmp/profile`目录下生成一个profile的记录文件。
44

55
**提示:**
66
请不要在timeline记录信息时运行太多次迭代,因为timeline中的记录数量和迭代次数是成正比的。
77

88
```python
9-
with profiler.profiler('All', 'total', '/tmp/profile') as prof:
10-
for pass_id in range(pass_num):
11-
for batch_id, data in enumerate(train_reader()):
12-
exe.run(fluid.default_main_program(),
13-
feed=feeder.feed(data),
14-
fetch_list=[])
9+
for pass_id in range(pass_num):
10+
for batch_id, data in enumerate(train_reader()):
11+
if pass_id == 0 and batch_id == 5:
12+
profiler.start_profiler("All")
13+
elif pass_id == 0 and batch_id == 10:
14+
profiler.stop_profiler("total", "/tmp/profile")
15+
exe.run(fluid.default_main_program(),
16+
feed=feeder.feed(data),
17+
fetch_list=[])
1518
...
1619
```
1720

1821
1. 运行`python paddle/tools/timeline.py`来处理`/tmp/profile`,这个程序默认会生成一个`/tmp/timeline`文件,你也可以用命令行参数来修改这个路径,请参考[timeline.py](https://github.com/PaddlePaddle/Paddle/blob/develop/tools/timeline.py)
22+
```python
23+
python Paddle/tools/timeline.py --profile_path=/tmp/profile --timeline_path=timeline
24+
```
1925

2026
1. 打开chrome浏览器,访问<chrome://tracing/>,用`load`按钮来加载生成的`timeline`文件。
2127

doc/fluid/howto/optimization/timeline_en.md

Lines changed: 14 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,22 +1,28 @@
11
# how to use timeline tool to do profile
22

3-
1. Add `with profiler.profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number.
3+
1. Add `profiler.start_profiler(...)``profiler.stop_profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number.
44

55
```python
6-
with profiler.profiler('All', 'total', '/tmp/profile') as prof:
7-
for pass_id in range(pass_num):
8-
for batch_id, data in enumerate(train_reader()):
9-
exe.run(fluid.default_main_program(),
10-
feed=feeder.feed(data),
11-
fetch_list=[],
12-
use_program_cache=True)
6+
for pass_id in range(pass_num):
7+
for batch_id, data in enumerate(train_reader()):
8+
if pass_id == 0 and batch_id == 5:
9+
profiler.start_profiler("All")
10+
elif pass_id == 0 and batch_id == 10:
11+
profiler.stop_profiler("total", "/tmp/profile")
12+
exe.run(fluid.default_main_program(),
13+
feed=feeder.feed(data),
14+
fetch_list=[])
1315
...
1416
```
1517

1618
1. Run `python paddle/tools/timeline.py` to process `/tmp/profile`, it will generate another
1719
file `/tmp/timeline` by default. You can change the path by cmd parameter, please take a look at
1820
[timeline.py](https://github.com/PaddlePaddle/Paddle/blob/develop/tools/timeline.py) for details.
1921

22+
```python
23+
python Paddle/tools/timeline.py --profile_path=/tmp/profile --timeline_path=timeline
24+
```
25+
2026
1. Open chrome and visit <chrome://tracing/>, use `load` button to load the generated `timeline` file.
2127

2228
![chrome tracing](./tracing.jpeg)

paddle/fluid/framework/details/all_reduce_op_handle.cc

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@
1717
#include "paddle/fluid/framework/details/container_cast.h"
1818
#include "paddle/fluid/framework/details/reduce_and_gather.h"
1919
#include "paddle/fluid/framework/details/variable_visitor.h"
20+
#include "paddle/fluid/platform/profiler.h"
2021

2122
namespace paddle {
2223
namespace framework {
@@ -45,6 +46,7 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
4546
#endif
4647

4748
void AllReduceOpHandle::RunImpl() {
49+
platform::RecordEvent r("all_reduce", nullptr);
4850
if (NoDummyInputSize() == 1) {
4951
return; // No need to all reduce when GPU count = 1;
5052
} else {

paddle/fluid/framework/details/reduce_op_handle.cc

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16,12 +16,14 @@
1616
#include "paddle/fluid/framework/details/container_cast.h"
1717
#include "paddle/fluid/framework/details/reduce_and_gather.h"
1818
#include "paddle/fluid/framework/details/variable_visitor.h"
19+
#include "paddle/fluid/platform/profiler.h"
1920

2021
namespace paddle {
2122
namespace framework {
2223
namespace details {
2324

2425
void ReduceOpHandle::RunImpl() {
26+
platform::RecordEvent r("reduce", nullptr);
2527
if (places_.size() == 1) return;
2628
// the input and output may have dummy var.
2729
auto in_var_handles = DynamicCast<VarHandle>(inputs_);

paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.cc

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@
1717
#include <string>
1818
#include <vector>
1919
#include "paddle/fluid/framework/executor.h"
20+
#include "paddle/fluid/platform/profiler.h"
2021

2122
namespace paddle {
2223
namespace framework {
@@ -62,6 +63,7 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
6263
eptr = std::current_exception();
6364
}
6465

66+
platform::RecordEvent e("ScopeBufferedSSAGraphExecutorAfterRun", nullptr);
6567
drop_scope_counter_ += 1;
6668
if (!fetch_tensors.empty() ||
6769
drop_scope_counter_ == strategy_.num_iteration_per_drop_scope_) {

paddle/fluid/framework/details/threaded_ssa_graph_executor.cc

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,7 @@
1515
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
1616

1717
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
18+
#include "paddle/fluid/platform/profiler.h"
1819

1920
namespace paddle {
2021
namespace framework {
@@ -34,6 +35,8 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
3435

3536
FeedFetchList ThreadedSSAGraphExecutor::Run(
3637
const std::vector<std::string> &fetch_tensors) {
38+
std::unique_ptr<platform::RecordEvent> event(
39+
new platform::RecordEvent("ThreadedSSAGraphExecutorPrepare", nullptr));
3740
std::unordered_map<OpHandleBase *, size_t> pending_ops;
3841
std::unordered_set<VarHandleBase *> pending_vars;
3942
BlockingQueue<VarHandleBase *> ready_vars;
@@ -84,6 +87,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
8487
// Clean run context
8588
run_op_futures_.clear();
8689
exception_holder_.Clear();
90+
event.reset(nullptr);
8791

8892
// Step 3. Execution
8993
while (!pending_vars.empty()) {

paddle/fluid/framework/operator.cc

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -136,6 +136,8 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
136136
platform::SetDeviceId(dev_id);
137137
#endif
138138
}
139+
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
140+
platform::RecordEvent record_event(Type(), pool.Get(place));
139141
RunImpl(scope, place);
140142
VLOG(10) << "+ " << DebugStringEx(&scope);
141143
}
@@ -639,9 +641,6 @@ void OperatorWithKernel::RunImpl(const Scope& scope,
639641
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
640642
auto* dev_ctx = pool.Get(place);
641643

642-
// For profiling, don't move out of this function because that will result
643-
// in the failure of multi-GPU profiling.
644-
platform::RecordEvent record_event(Type(), dev_ctx);
645644
// check if op[type] has kernel registered.
646645
auto& all_op_kernels = AllOpKernels();
647646
auto kernels_iter = all_op_kernels.find(type_);

paddle/fluid/inference/api/CMakeLists.txt

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -74,9 +74,10 @@ if (WITH_ANAKIN) # only needed in CI
7474
target_link_libraries(inference_anakin_api anakin anakin_saber_common)
7575
target_link_libraries(inference_anakin_api_shared anakin anakin_saber_common)
7676
if (WITH_TESTING)
77-
cc_test(inference_anakin_test SRCS api_anakin_engine_tester.cc
78-
ARGS --model=${ANAKIN_INSTALL_DIR}/mobilenet_v2.anakin.bin
79-
DEPS inference_anakin_api_shared)
80-
target_compile_options(inference_anakin_test BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS})
77+
# this test is unstable, disable it first.
78+
#cc_test(inference_anakin_test SRCS api_anakin_engine_tester.cc
79+
#ARGS --model=${ANAKIN_INSTALL_DIR}/mobilenet_v2.anakin.bin
80+
#DEPS inference_anakin_api_shared)
81+
#target_compile_options(inference_anakin_test BEFORE PUBLIC ${ANAKIN_COMPILE_EXTRA_FLAGS})
8182
endif(WITH_TESTING)
8283
endif()

paddle/fluid/operators/feed_op.cc

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,6 @@ class FeedOp : public framework::OperatorBase {
3131
const platform::Place &place) const override {
3232
// get device context from pool
3333
auto *dev_ctx = platform::DeviceContextPool::Instance().Get(place);
34-
platform::RecordEvent record_event(Type(), dev_ctx);
3534

3635
auto feed_var_name = Input("X");
3736
auto *feed_var = scope.FindVar(feed_var_name);

paddle/fluid/operators/fetch_barrier_op.cc

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -36,12 +36,6 @@ class FetchBarrierOp : public framework::OperatorBase {
3636
void RunImpl(const framework::Scope& scope,
3737
const platform::Place& place) const override {
3838
std::vector<std::string> eps = Attr<std::vector<std::string>>("endpoints");
39-
40-
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
41-
auto& ctx = *pool.Get(place);
42-
// For profiling
43-
platform::RecordEvent record_event(Type(), &ctx);
44-
4539
distributed::RPCClient* rpc_client =
4640
distributed::RPCClient::GetInstance<RPCCLIENT_T>();
4741

0 commit comments

Comments
 (0)