|
| 1 | +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import division |
| 16 | + |
| 17 | +import os |
| 18 | +import sys |
| 19 | +import six |
| 20 | +import time |
| 21 | +import unittest |
| 22 | +import multiprocessing |
| 23 | +import numpy as np |
| 24 | + |
| 25 | +import paddle.fluid as fluid |
| 26 | +from paddle.fluid.io import Dataset, BatchSampler, DataLoader |
| 27 | +from paddle.fluid.dygraph.nn import Linear |
| 28 | +from paddle.fluid.dygraph.base import to_variable |
| 29 | + |
| 30 | + |
| 31 | +class RandomDataset(Dataset): |
| 32 | + def __init__(self, sample_num): |
| 33 | + self.sample_num = sample_num |
| 34 | + |
| 35 | + def __getitem__(self, idx): |
| 36 | + np.random.seed(idx) |
| 37 | + image = np.random.random([784]).astype('float32') |
| 38 | + label = np.random.randint(0, 9, (1, )).astype('int64') |
| 39 | + return image, label |
| 40 | + |
| 41 | + def __len__(self): |
| 42 | + return self.sample_num |
| 43 | + |
| 44 | + |
| 45 | +class TestDataLoaderAssert(unittest.TestCase): |
| 46 | + def test_main(self): |
| 47 | + place = fluid.cpu_places()[0] |
| 48 | + with fluid.dygraph.guard(place): |
| 49 | + dataset = RandomDataset(100) |
| 50 | + batch_sampler = BatchSampler(dataset=dataset, batch_size=4) |
| 51 | + |
| 52 | + # dataset is not instance of Dataset |
| 53 | + try: |
| 54 | + loader = DataLoader(dataset=batch_sampler, places=place) |
| 55 | + self.assertTrue(False) |
| 56 | + except AssertionError: |
| 57 | + pass |
| 58 | + |
| 59 | + # places is None |
| 60 | + try: |
| 61 | + loader = DataLoader(dataset=dataset, places=None) |
| 62 | + self.assertTrue(False) |
| 63 | + except AssertionError: |
| 64 | + pass |
| 65 | + |
| 66 | + # num_workers < 0 |
| 67 | + try: |
| 68 | + loader = DataLoader( |
| 69 | + dataset=dataset, places=place, num_workers=-1) |
| 70 | + self.assertTrue(False) |
| 71 | + except AssertionError: |
| 72 | + pass |
| 73 | + |
| 74 | + # timeout < 0 |
| 75 | + try: |
| 76 | + loader = DataLoader(dataset=dataset, places=place, timeout=-1) |
| 77 | + self.assertTrue(False) |
| 78 | + except AssertionError: |
| 79 | + pass |
| 80 | + |
| 81 | + # batch_sampler is not instance of BatchSampler |
| 82 | + try: |
| 83 | + loader = DataLoader( |
| 84 | + dataset=dataset, places=place, batch_sampler=dataset) |
| 85 | + self.assertTrue(False) |
| 86 | + except AssertionError: |
| 87 | + pass |
| 88 | + |
| 89 | + # set batch_sampler and shuffle/batch_size/drop_last |
| 90 | + try: |
| 91 | + loader = DataLoader( |
| 92 | + dataset=dataset, |
| 93 | + places=place, |
| 94 | + batch_sampler=batch_sampler, |
| 95 | + shuffle=True, |
| 96 | + drop_last=True) |
| 97 | + self.assertTrue(False) |
| 98 | + except AssertionError: |
| 99 | + pass |
| 100 | + |
| 101 | + # set batch_sampler correctly |
| 102 | + try: |
| 103 | + loader = DataLoader( |
| 104 | + dataset=dataset, places=place, batch_sampler=batch_sampler) |
| 105 | + self.assertTrue(True) |
| 106 | + except AssertionError: |
| 107 | + self.assertTrue(False) |
| 108 | + |
| 109 | + |
| 110 | +# CI Converage cannot record stub in subprocess, |
| 111 | +# HACK a _worker_loop in main process call here |
| 112 | +class TestDataLoaderWorkerLoop(unittest.TestCase): |
| 113 | + def run_without_worker_done(self, use_shared_memory=True): |
| 114 | + try: |
| 115 | + place = fluid.cpu_places()[0] |
| 116 | + with fluid.dygraph.guard(place): |
| 117 | + dataset = RandomDataset(800) |
| 118 | + |
| 119 | + # test init_fn |
| 120 | + def _init_fn(worker_id): |
| 121 | + pass |
| 122 | + |
| 123 | + # test collate_fn |
| 124 | + def _collate_fn(sample_list): |
| 125 | + return [ |
| 126 | + np.stack( |
| 127 | + s, axis=0) for s in list(zip(*sample_list)) |
| 128 | + ] |
| 129 | + |
| 130 | + loader = DataLoader( |
| 131 | + dataset, |
| 132 | + num_workers=1, |
| 133 | + places=place, |
| 134 | + use_shared_memory=use_shared_memory) |
| 135 | + assert loader.num_workers > 0, \ |
| 136 | + "go to AssertionError and pass in Mac and Windows" |
| 137 | + loader = iter(loader) |
| 138 | + print("loader length", len(loader)) |
| 139 | + indices_queue = multiprocessing.Queue() |
| 140 | + for i in range(10): |
| 141 | + indices_queue.put([i, i + 10]) |
| 142 | + indices_queue.put(None) |
| 143 | + loader._worker_loop( |
| 144 | + loader._dataset, indices_queue, loader._data_queue, |
| 145 | + loader._workers_done_event, _collate_fn, _init_fn, 0) |
| 146 | + self.assertTrue(False) |
| 147 | + except AssertionError: |
| 148 | + pass |
| 149 | + except Exception: |
| 150 | + self.assertTrue(False) |
| 151 | + |
| 152 | + def run_with_worker_done(self, use_shared_memory=True): |
| 153 | + try: |
| 154 | + place = fluid.cpu_places()[0] |
| 155 | + with fluid.dygraph.guard(place): |
| 156 | + dataset = RandomDataset(800) |
| 157 | + |
| 158 | + # test init_fn |
| 159 | + def _init_fn(worker_id): |
| 160 | + pass |
| 161 | + |
| 162 | + # test collate_fn |
| 163 | + def _collate_fn(sample_list): |
| 164 | + return [ |
| 165 | + np.stack( |
| 166 | + s, axis=0) for s in list(zip(*sample_list)) |
| 167 | + ] |
| 168 | + |
| 169 | + loader = DataLoader( |
| 170 | + dataset, |
| 171 | + num_workers=1, |
| 172 | + places=place, |
| 173 | + use_shared_memory=use_shared_memory) |
| 174 | + assert loader.num_workers > 0, \ |
| 175 | + "go to AssertionError and pass in Mac and Windows" |
| 176 | + loader = iter(loader) |
| 177 | + print("loader length", len(loader)) |
| 178 | + indices_queue = multiprocessing.Queue() |
| 179 | + for i in range(10): |
| 180 | + indices_queue.put([i, i + 10]) |
| 181 | + indices_queue.put(None) |
| 182 | + loader._workers_done_event.set() |
| 183 | + loader._worker_loop( |
| 184 | + loader._dataset, indices_queue, loader._data_queue, |
| 185 | + loader._workers_done_event, _collate_fn, _init_fn, 0) |
| 186 | + self.assertTrue(True) |
| 187 | + except AssertionError: |
| 188 | + pass |
| 189 | + except Exception: |
| 190 | + self.assertTrue(False) |
| 191 | + |
| 192 | + def test_main(self): |
| 193 | + for use_shared_memory in [True, False]: |
| 194 | + self.run_without_worker_done(use_shared_memory) |
| 195 | + self.run_with_worker_done(use_shared_memory) |
| 196 | + |
| 197 | + |
| 198 | +if __name__ == '__main__': |
| 199 | + unittest.main() |
0 commit comments