|
| 1 | +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +Indicesou may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include "paddle/fluid/framework/data_layout.h" |
| 16 | +#include "paddle/fluid/framework/eigen.h" |
| 17 | +#include "paddle/fluid/framework/op_registry.h" |
| 18 | + |
| 19 | +namespace paddle { |
| 20 | +namespace operators { |
| 21 | + |
| 22 | +class AffineChannelOpMaker : public framework::OpProtoAndCheckerMaker { |
| 23 | + public: |
| 24 | + void Make() override { |
| 25 | + AddInput("X", |
| 26 | + "(Tensor) Feature map input can be a 4D tensor with order NCHW " |
| 27 | + "or NHWC. It also can be a 2D tensor and C is the second " |
| 28 | + "dimension."); |
| 29 | + AddInput("Scale", |
| 30 | + "(Tensor) 1D input of shape (C), the c-th element " |
| 31 | + "is the scale factor of the affine transformation " |
| 32 | + "for the c-th channel of the input."); |
| 33 | + AddInput("Bias", |
| 34 | + "(Tensor) 1D input of shape (C), the c-th element " |
| 35 | + "is the bias of the affine transformation for the " |
| 36 | + "c-th channel of the input."); |
| 37 | + AddAttr<std::string>( |
| 38 | + "data_layout", |
| 39 | + "(string, default NCHW) Only used in " |
| 40 | + "An optional string from: \"NHWC\", \"NCHW\". " |
| 41 | + "Defaults to \"NHWC\". Specify the data format of the output data, " |
| 42 | + "the input will be transformed automatically. ") |
| 43 | + .SetDefault("AnyLayout"); |
| 44 | + AddOutput("Out", "(Tensor) A tensor of the same shape and order with X."); |
| 45 | + AddComment(R"DOC( |
| 46 | +
|
| 47 | +Applies a separate affine transformation to each channel of the input. Useful |
| 48 | +for replacing spatial batch norm with its equivalent fixed transformation. |
| 49 | +The input also can be 2D tensor and applies a affine transformation in second |
| 50 | +dimension. |
| 51 | +
|
| 52 | +$$Out = Scale*X + Bias$$ |
| 53 | +
|
| 54 | +)DOC"); |
| 55 | + } |
| 56 | +}; |
| 57 | + |
| 58 | +class AffineChannelOp : public framework::OperatorWithKernel { |
| 59 | + public: |
| 60 | + using framework::OperatorWithKernel::OperatorWithKernel; |
| 61 | + void InferShape(framework::InferShapeContext* ctx) const override { |
| 62 | + PADDLE_ENFORCE(ctx->HasInput("X"), |
| 63 | + "Input(X) of AffineChannelOp should not be null."); |
| 64 | + PADDLE_ENFORCE(ctx->HasInput("Scale"), |
| 65 | + "Input(Scale) of AffineChannelOp should not be null."); |
| 66 | + PADDLE_ENFORCE(ctx->HasInput("Bias"), |
| 67 | + "Input(Bias) of AffineChannelOp should not be null."); |
| 68 | + PADDLE_ENFORCE(ctx->HasOutput("Out"), |
| 69 | + "Output(Out) of AffineChannelOp should not be null."); |
| 70 | + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); |
| 71 | + ctx->ShareLoD("X", "Out"); |
| 72 | + } |
| 73 | +}; |
| 74 | + |
| 75 | +class AffineChannelOpGrad : public framework::OperatorWithKernel { |
| 76 | + public: |
| 77 | + using framework::OperatorWithKernel::OperatorWithKernel; |
| 78 | + void InferShape(framework::InferShapeContext* ctx) const override { |
| 79 | + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), |
| 80 | + "Input(Out@GRAD) should not be null."); |
| 81 | + if (ctx->HasOutput(framework::GradVarName("X"))) { |
| 82 | + PADDLE_ENFORCE(ctx->HasInput("Scale"), |
| 83 | + "Input(Scale) should not be null."); |
| 84 | + ctx->SetOutputDim(framework::GradVarName("X"), |
| 85 | + ctx->GetInputDim(framework::GradVarName("Out"))); |
| 86 | + } |
| 87 | + if (ctx->HasOutput(framework::GradVarName("Scale"))) { |
| 88 | + // Scale@GRAD and Bias@GRAD must exist at the same time. |
| 89 | + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), |
| 90 | + "Output(Scale@GRAD) should not be null."); |
| 91 | + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); |
| 92 | + ctx->SetOutputDim(framework::GradVarName("Scale"), |
| 93 | + ctx->GetInputDim("Scale")); |
| 94 | + ctx->SetOutputDim(framework::GradVarName("Bias"), |
| 95 | + ctx->GetInputDim("Scale")); |
| 96 | + } |
| 97 | + } |
| 98 | +}; |
| 99 | + |
| 100 | +template <typename T> |
| 101 | +using EigenArrayMap = |
| 102 | + Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>; |
| 103 | +template <typename T> |
| 104 | +using ConstEigenArrayMap = |
| 105 | + Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>; |
| 106 | +template <typename T> |
| 107 | +using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>; |
| 108 | +template <typename T> |
| 109 | +using ConstEigenVectorArrayMap = |
| 110 | + Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>; |
| 111 | + |
| 112 | +template <typename DeviceContext, typename T> |
| 113 | +class AffineChannelKernel : public framework::OpKernel<T> { |
| 114 | + public: |
| 115 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 116 | + auto* x = ctx.Input<framework::Tensor>("X"); |
| 117 | + auto* scale = ctx.Input<framework::Tensor>("Scale"); |
| 118 | + auto* bias = ctx.Input<framework::Tensor>("Bias"); |
| 119 | + |
| 120 | + auto* y = ctx.Output<framework::Tensor>("Out"); |
| 121 | + y->mutable_data<T>(ctx.GetPlace()); |
| 122 | + |
| 123 | + const framework::DataLayout layout = |
| 124 | + framework::StringToDataLayout(ctx.Attr<std::string>("data_layout")); |
| 125 | + |
| 126 | + auto dims = x->dims(); |
| 127 | + int N = dims[0]; |
| 128 | + int C = layout == framework::DataLayout::kNCHW ? dims[1] |
| 129 | + : dims[dims.size() - 1]; |
| 130 | + int HxW = x->numel() / N / C; |
| 131 | + |
| 132 | + auto* scale_d = scale->data<T>(); |
| 133 | + auto* bias_d = bias->data<T>(); |
| 134 | + ConstEigenVectorArrayMap<T> a_e(scale_d, C); |
| 135 | + ConstEigenVectorArrayMap<T> b_e(bias_d, C); |
| 136 | + |
| 137 | + auto* x_d = x->data<T>(); |
| 138 | + auto* y_d = y->data<T>(); |
| 139 | + if (layout == framework::DataLayout::kNCHW) { |
| 140 | + int stride = C * HxW; |
| 141 | + for (int i = 0; i < N; i++) { |
| 142 | + ConstEigenArrayMap<T> x_e(x_d, HxW, C); |
| 143 | + EigenArrayMap<T> y_e(y_d, HxW, C); |
| 144 | + y_e = (x_e.rowwise() * a_e.transpose()).rowwise() + b_e.transpose(); |
| 145 | + x_d += stride; |
| 146 | + y_d += stride; |
| 147 | + } |
| 148 | + } else { |
| 149 | + int num = N * HxW; |
| 150 | + ConstEigenArrayMap<T> x_e(x_d, C, num); |
| 151 | + EigenArrayMap<T> y_e(y_d, C, num); |
| 152 | + y_e = (x_e.colwise() * a_e).colwise() + b_e; |
| 153 | + } |
| 154 | + } |
| 155 | +}; |
| 156 | + |
| 157 | +template <typename DeviceContext, typename T> |
| 158 | +class AffineChannelGradKernel : public framework::OpKernel<T> { |
| 159 | + public: |
| 160 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 161 | + auto* x = ctx.Input<framework::Tensor>("X"); |
| 162 | + auto* scale = ctx.Input<framework::Tensor>("Scale"); |
| 163 | + auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); |
| 164 | + |
| 165 | + auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); |
| 166 | + auto* dscale = |
| 167 | + ctx.Output<framework::Tensor>(framework::GradVarName("Scale")); |
| 168 | + auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias")); |
| 169 | + |
| 170 | + const framework::DataLayout layout = |
| 171 | + framework::StringToDataLayout(ctx.Attr<std::string>("data_layout")); |
| 172 | + |
| 173 | + auto dims = x->dims(); |
| 174 | + int N = dims[0]; |
| 175 | + int C = layout == framework::DataLayout::kNCHW ? dims[1] |
| 176 | + : dims[dims.size() - 1]; |
| 177 | + int HxW = x->numel() / N / C; |
| 178 | + |
| 179 | + auto* x_d = x->data<T>(); |
| 180 | + auto* dy_d = dy->data<T>(); |
| 181 | + auto* scale_d = scale->data<T>(); |
| 182 | + ConstEigenVectorArrayMap<T> scale_e(scale_d, C); |
| 183 | + |
| 184 | + T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr; |
| 185 | + T* dscale_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr; |
| 186 | + T* dbias_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr; |
| 187 | + EigenVectorArrayMap<T> dscale_e(dscale_d, C); |
| 188 | + EigenVectorArrayMap<T> dbias_e(dbias_d, C); |
| 189 | + |
| 190 | + if (layout == framework::DataLayout::kNCHW) { |
| 191 | + // compute dx |
| 192 | + int stride = C * HxW; |
| 193 | + if (dx) { |
| 194 | + for (int i = 0; i < N; i++) { |
| 195 | + ConstEigenArrayMap<T> dy_e(dy_d, HxW, C); |
| 196 | + EigenArrayMap<T> dx_e(dx_d, HxW, C); |
| 197 | + dx_e = dy_e.rowwise() * scale_e.transpose(); |
| 198 | + dy_d += stride; |
| 199 | + dx_d += stride; |
| 200 | + } |
| 201 | + } |
| 202 | + // compute dscale and dbias |
| 203 | + if (dscale && dbias) { |
| 204 | + dy_d = dy->data<T>(); |
| 205 | + for (int i = 0; i < N; i++) { |
| 206 | + ConstEigenArrayMap<T> x_e(x_d, HxW, C); |
| 207 | + ConstEigenArrayMap<T> dy_e(dy_d, HxW, C); |
| 208 | + if (i == 0) { |
| 209 | + dscale_e = (x_e * dy_e).colwise().sum(); |
| 210 | + } else { |
| 211 | + dscale_e += (x_e * dy_e).colwise().sum(); |
| 212 | + } |
| 213 | + if (i == 0) { |
| 214 | + dbias_e = dy_e.colwise().sum(); |
| 215 | + } else { |
| 216 | + dbias_e += dy_e.colwise().sum(); |
| 217 | + } |
| 218 | + x_d += stride; |
| 219 | + dy_d += stride; |
| 220 | + } |
| 221 | + } |
| 222 | + } else { |
| 223 | + int num = N * HxW; |
| 224 | + ConstEigenArrayMap<T> dy_e(dy_d, C, num); |
| 225 | + // compute dx |
| 226 | + if (dx) { |
| 227 | + EigenArrayMap<T> dx_e(dx_d, C, num); |
| 228 | + dx_e = dy_e.colwise() * scale_e; |
| 229 | + } |
| 230 | + // compute dscale and dbias |
| 231 | + if (dscale && dbias) { |
| 232 | + ConstEigenArrayMap<T> x_e(x_d, C, num); |
| 233 | + dscale_e = (x_e * dy_e).rowwise().sum(); |
| 234 | + dbias_e = dy_e.rowwise().sum(); |
| 235 | + } |
| 236 | + } |
| 237 | + } |
| 238 | +}; |
| 239 | + |
| 240 | +} // namespace operators |
| 241 | +} // namespace paddle |
| 242 | + |
| 243 | +namespace ops = paddle::operators; |
| 244 | +using CPU = paddle::platform::CPUDeviceContext; |
| 245 | + |
| 246 | +REGISTER_OPERATOR(affine_channel, ops::AffineChannelOp, |
| 247 | + ops::AffineChannelOpMaker, |
| 248 | + paddle::framework::DefaultGradOpDescMaker<true>); |
| 249 | +REGISTER_OPERATOR(affine_channel_grad, ops::AffineChannelOpGrad); |
| 250 | + |
| 251 | +REGISTER_OP_CPU_KERNEL(affine_channel, ops::AffineChannelKernel<CPU, float>, |
| 252 | + ops::AffineChannelKernel<CPU, double>); |
| 253 | +REGISTER_OP_CPU_KERNEL(affine_channel_grad, |
| 254 | + ops::AffineChannelGradKernel<CPU, float>, |
| 255 | + ops::AffineChannelGradKernel<CPU, double>); |
0 commit comments