@@ -59,14 +59,14 @@ def auc(input, label, curve='ROC', num_thresholds=200):
59
59
This implementation computes the AUC according to forward output and label.
60
60
It is used very widely in binary classification evaluation.
61
61
62
- As a note: If input label contains values other than 0 and 1, it will be
63
- cast to bool. You can find the relevant definitions `here
64
- <https://en.wikipedia.org/wiki/Receiver_operating_characteristic
65
- #Area_under_the_curve>`_.
62
+ Note: If input label contains values other than 0 and 1, it will be cast
63
+ to `bool`. Find the relevant definitions `here <https://en.wikipedia.org\
64
+ /wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
66
65
67
66
There are two types of possible curves:
68
- 1. ROC: Receiver operating characteristic
69
- 2. PR: Precision Recall
67
+
68
+ 1. ROC: Receiver operating characteristic;
69
+ 2. PR: Precision Recall
70
70
71
71
Args:
72
72
input(Variable): A floating-point 2D Variable, values are in the range
@@ -85,9 +85,9 @@ def auc(input, label, curve='ROC', num_thresholds=200):
85
85
Examples:
86
86
.. code-block:: python
87
87
88
- # network is a binary classification model and label the ground truth
89
- prediction = network(image, is_infer=True)
90
- auc_out=fluid.layers.auc(input=prediction, label=label)
88
+ # network is a binary classification model and label the ground truth
89
+ prediction = network(image, is_infer=True)
90
+ auc_out=fluid.layers.auc(input=prediction, label=label)
91
91
"""
92
92
93
93
warnings .warn (
0 commit comments