Skip to content

Commit 68811bc

Browse files
author
Yibing Liu
committed
Format the doc of layers.auc
1 parent 23ec12c commit 68811bc

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

python/paddle/fluid/layers/metric.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -59,14 +59,14 @@ def auc(input, label, curve='ROC', num_thresholds=200):
5959
This implementation computes the AUC according to forward output and label.
6060
It is used very widely in binary classification evaluation.
6161
62-
As a note: If input label contains values other than 0 and 1, it will be
63-
cast to bool. You can find the relevant definitions `here
64-
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic
65-
#Area_under_the_curve>`_.
62+
Note: If input label contains values other than 0 and 1, it will be cast
63+
to `bool`. Find the relevant definitions `here <https://en.wikipedia.org\
64+
/wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
6665
6766
There are two types of possible curves:
68-
1. ROC: Receiver operating characteristic
69-
2. PR: Precision Recall
67+
68+
1. ROC: Receiver operating characteristic;
69+
2. PR: Precision Recall
7070
7171
Args:
7272
input(Variable): A floating-point 2D Variable, values are in the range
@@ -85,9 +85,9 @@ def auc(input, label, curve='ROC', num_thresholds=200):
8585
Examples:
8686
.. code-block:: python
8787
88-
# network is a binary classification model and label the ground truth
89-
prediction = network(image, is_infer=True)
90-
auc_out=fluid.layers.auc(input=prediction, label=label)
88+
# network is a binary classification model and label the ground truth
89+
prediction = network(image, is_infer=True)
90+
auc_out=fluid.layers.auc(input=prediction, label=label)
9191
"""
9292

9393
warnings.warn(

0 commit comments

Comments
 (0)