|
15 | 15 | from __future__ import print_function
|
16 | 16 |
|
17 | 17 | import numpy as np
|
18 |
| - |
19 | 18 | import paddle
|
20 |
| -import paddle.fluid as fluid |
21 |
| -from paddle.fluid.dygraph.nn import Embedding |
22 |
| -from paddle.fluid.dygraph.base import to_variable |
23 | 19 |
|
24 | 20 | from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase
|
25 |
| -from parallel_dygraph_sparse_embedding import SimpleNet, fake_sample_reader, TestSparseEmbedding |
| 21 | +from paddle.nn import Layer, Embedding |
| 22 | +paddle.set_default_dtype("float64") |
| 23 | + |
| 24 | + |
| 25 | +class SimpleNet(Layer): |
| 26 | + def __init__(self, |
| 27 | + hidden_size, |
| 28 | + vocab_size, |
| 29 | + num_steps=20, |
| 30 | + init_scale=0.1, |
| 31 | + is_sparse=False, |
| 32 | + dtype="float64"): |
| 33 | + super(SimpleNet, self).__init__() |
| 34 | + self.hidden_size = hidden_size |
| 35 | + self.vocab_size = vocab_size |
| 36 | + self.init_scale = init_scale |
| 37 | + self.num_steps = num_steps |
| 38 | + self.embedding = Embedding( |
| 39 | + self.vocab_size, |
| 40 | + self.hidden_size, |
| 41 | + sparse=True, |
| 42 | + weight_attr=paddle.ParamAttr( |
| 43 | + name='embedding_param', |
| 44 | + initializer=paddle.nn.initializer.Uniform( |
| 45 | + low=-init_scale, high=init_scale))) |
| 46 | + self.softmax_weight = self.create_parameter( |
| 47 | + attr=paddle.ParamAttr(), |
| 48 | + shape=[self.hidden_size, self.vocab_size], |
| 49 | + dtype=dtype, |
| 50 | + default_initializer=paddle.nn.initializer.Uniform( |
| 51 | + low=-self.init_scale, high=self.init_scale)) |
| 52 | + self.softmax_bias = self.create_parameter( |
| 53 | + attr=paddle.ParamAttr(), |
| 54 | + shape=[self.vocab_size], |
| 55 | + dtype=dtype, |
| 56 | + default_initializer=paddle.nn.initializer.Uniform( |
| 57 | + low=-self.init_scale, high=self.init_scale)) |
| 58 | + |
| 59 | + def forward(self, input, label): |
| 60 | + x_emb = self.embedding(input) |
| 61 | + fc = paddle.matmul(x_emb, self.softmax_weight) |
| 62 | + fc = paddle.add(fc, self.softmax_bias) |
| 63 | + projection = paddle.reshape(fc, shape=[-1, self.vocab_size]) |
| 64 | + loss = paddle.nn.functional.softmax_with_cross_entropy( |
| 65 | + logits=projection, label=label, soft_label=False) |
| 66 | + loss = paddle.reshape(loss, shape=[-1, self.num_steps]) |
| 67 | + loss = paddle.mean(loss, axis=[0]) |
| 68 | + loss = paddle.sum(loss) |
| 69 | + |
| 70 | + return loss |
| 71 | + |
26 | 72 |
|
27 | 73 | # global configs
|
28 | 74 | batch_size = 4
|
|
33 | 79 | init_scale = 0.1
|
34 | 80 |
|
35 | 81 |
|
36 |
| -class TestSparseEmbeddingFP64(TestSparseEmbedding): |
| 82 | +def fake_sample_reader(): |
| 83 | + def __reader__(): |
| 84 | + for i in range(batch_num): |
| 85 | + x_data = np.arange(num_steps).astype('int64') |
| 86 | + y_data = np.arange(1, 1 + num_steps).astype('int64') |
| 87 | + yield x_data, y_data |
| 88 | + |
| 89 | + return __reader__ |
| 90 | + |
| 91 | + |
| 92 | +class TestSparseEmbeddingFP64(TestParallelDyGraphRunnerBase): |
37 | 93 | def get_model(self):
|
38 | 94 | model = SimpleNet(
|
39 | 95 | hidden_size=hidden_size,
|
40 | 96 | vocab_size=vocab_size,
|
41 | 97 | num_steps=num_steps,
|
42 | 98 | init_scale=init_scale,
|
43 |
| - is_sparse=True, |
44 |
| - dtype="float64") |
| 99 | + is_sparse=True) |
45 | 100 |
|
46 | 101 | train_reader = paddle.batch(
|
47 | 102 | fake_sample_reader(), batch_size=batch_size, drop_last=True)
|
48 | 103 |
|
49 |
| - optimizer = fluid.optimizer.SGD(learning_rate=0.001, |
50 |
| - parameter_list=model.parameters()) |
| 104 | + optimizer = paddle.optimizer.SGD(learning_rate=0.001, |
| 105 | + parameters=model.parameters()) |
51 | 106 |
|
52 | 107 | return model, train_reader, optimizer
|
53 | 108 |
|
| 109 | + def run_one_loop(self, model, optimizer, batch): |
| 110 | + x_data = np.array([x[0].reshape(3) for x in batch]).astype('int64') |
| 111 | + y_data = np.array([x[1].reshape(3) for x in batch]).astype('int64') |
| 112 | + x_data = x_data.reshape((-1, num_steps, 1)) |
| 113 | + y_data = y_data.reshape((-1, 1)) |
| 114 | + |
| 115 | + x = paddle.to_tensor(x_data) |
| 116 | + y = paddle.to_tensor(y_data) |
| 117 | + |
| 118 | + dy_loss = model(x, y) |
| 119 | + |
| 120 | + return dy_loss |
| 121 | + |
54 | 122 |
|
55 | 123 | if __name__ == "__main__":
|
56 | 124 | runtime_main(TestSparseEmbeddingFP64)
|
0 commit comments