|
| 1 | +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include <sys/time.h> |
| 16 | +#include <time.h> |
| 17 | +#include <fstream> |
| 18 | +#include <thread> // NOLINT |
| 19 | +#include "gflags/gflags.h" |
| 20 | +#include "gtest/gtest.h" |
| 21 | +#include "paddle/fluid/inference/tests/test_helper.h" |
| 22 | +#ifdef PADDLE_WITH_MKLML |
| 23 | +#include <mkl_service.h> |
| 24 | +#include <omp.h> |
| 25 | +#endif |
| 26 | + |
| 27 | +DEFINE_string(model_path, "", "Directory of the inference model."); |
| 28 | +DEFINE_string(data_file, "", "File of input index data."); |
| 29 | +DEFINE_int32(repeat, 100, "Running the inference program repeat times"); |
| 30 | +DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run inference"); |
| 31 | +DEFINE_bool(prepare_vars, true, "Prepare variables before executor"); |
| 32 | +DEFINE_int32(num_threads, 1, "Number of threads should be used"); |
| 33 | + |
| 34 | +inline double GetCurrentMs() { |
| 35 | + struct timeval time; |
| 36 | + gettimeofday(&time, NULL); |
| 37 | + return 1e+3 * time.tv_sec + 1e-3 * time.tv_usec; |
| 38 | +} |
| 39 | + |
| 40 | +// This function just give dummy data for recognize_digits model. |
| 41 | +size_t DummyData(std::vector<paddle::framework::LoDTensor>* out) { |
| 42 | + paddle::framework::LoDTensor input; |
| 43 | + SetupTensor<float>(&input, {1, 1, 28, 28}, -1.f, 1.f); |
| 44 | + out->emplace_back(input); |
| 45 | + return 1; |
| 46 | +} |
| 47 | + |
| 48 | +// Load the input word index data from file and save into LodTensor. |
| 49 | +// Return the size of words. |
| 50 | +size_t LoadData(std::vector<paddle::framework::LoDTensor>* out, |
| 51 | + const std::string& filename) { |
| 52 | + if (filename.empty()) { |
| 53 | + return DummyData(out); |
| 54 | + } |
| 55 | + |
| 56 | + size_t sz = 0; |
| 57 | + std::fstream fin(filename); |
| 58 | + std::string line; |
| 59 | + out->clear(); |
| 60 | + while (getline(fin, line)) { |
| 61 | + std::istringstream iss(line); |
| 62 | + std::vector<int64_t> ids; |
| 63 | + std::string field; |
| 64 | + while (getline(iss, field, ' ')) { |
| 65 | + ids.push_back(stoi(field)); |
| 66 | + } |
| 67 | + if (ids.size() >= 1024) { |
| 68 | + // Synced with NLP guys, they will ignore input larger then 1024 |
| 69 | + continue; |
| 70 | + } |
| 71 | + |
| 72 | + paddle::framework::LoDTensor words; |
| 73 | + paddle::framework::LoD lod{{0, ids.size()}}; |
| 74 | + words.set_lod(lod); |
| 75 | + int64_t* pdata = words.mutable_data<int64_t>( |
| 76 | + {static_cast<int64_t>(ids.size()), 1}, paddle::platform::CPUPlace()); |
| 77 | + memcpy(pdata, ids.data(), words.numel() * sizeof(int64_t)); |
| 78 | + out->emplace_back(words); |
| 79 | + sz += ids.size(); |
| 80 | + } |
| 81 | + return sz; |
| 82 | +} |
| 83 | + |
| 84 | +// Split input data samples into small pieces jobs as balanced as possible, |
| 85 | +// according to the number of threads. |
| 86 | +void SplitData( |
| 87 | + const std::vector<paddle::framework::LoDTensor>& datasets, |
| 88 | + std::vector<std::vector<const paddle::framework::LoDTensor*>>* jobs, |
| 89 | + const int num_threads) { |
| 90 | + size_t s = 0; |
| 91 | + jobs->resize(num_threads); |
| 92 | + while (s < datasets.size()) { |
| 93 | + for (auto it = jobs->begin(); it != jobs->end(); it++) { |
| 94 | + it->emplace_back(&datasets[s]); |
| 95 | + s++; |
| 96 | + if (s >= datasets.size()) { |
| 97 | + break; |
| 98 | + } |
| 99 | + } |
| 100 | + } |
| 101 | +} |
| 102 | + |
| 103 | +void ThreadRunInfer( |
| 104 | + const int tid, paddle::framework::Executor* executor, |
| 105 | + paddle::framework::Scope* scope, |
| 106 | + const std::unique_ptr<paddle::framework::ProgramDesc>& inference_program, |
| 107 | + const std::vector<std::vector<const paddle::framework::LoDTensor*>>& jobs) { |
| 108 | + auto copy_program = std::unique_ptr<paddle::framework::ProgramDesc>( |
| 109 | + new paddle::framework::ProgramDesc(*inference_program)); |
| 110 | + auto& sub_scope = scope->NewScope(); |
| 111 | + |
| 112 | + std::string feed_holder_name = "feed_" + paddle::string::to_string(tid); |
| 113 | + std::string fetch_holder_name = "fetch_" + paddle::string::to_string(tid); |
| 114 | + copy_program->SetFeedHolderName(feed_holder_name); |
| 115 | + copy_program->SetFetchHolderName(fetch_holder_name); |
| 116 | + |
| 117 | + const std::vector<std::string>& feed_target_names = |
| 118 | + copy_program->GetFeedTargetNames(); |
| 119 | + const std::vector<std::string>& fetch_target_names = |
| 120 | + copy_program->GetFetchTargetNames(); |
| 121 | + |
| 122 | + PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); |
| 123 | + std::map<std::string, paddle::framework::LoDTensor*> fetch_targets; |
| 124 | + paddle::framework::LoDTensor outtensor; |
| 125 | + fetch_targets[fetch_target_names[0]] = &outtensor; |
| 126 | + |
| 127 | + std::map<std::string, const paddle::framework::LoDTensor*> feed_targets; |
| 128 | + PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL); |
| 129 | + |
| 130 | + auto& inputs = jobs[tid]; |
| 131 | + auto start_ms = GetCurrentMs(); |
| 132 | + for (size_t i = 0; i < inputs.size(); ++i) { |
| 133 | + feed_targets[feed_target_names[0]] = inputs[i]; |
| 134 | + executor->Run(*copy_program, &sub_scope, &feed_targets, &fetch_targets, |
| 135 | + true /*create_local_scope*/, true /*create_vars*/, |
| 136 | + feed_holder_name, fetch_holder_name); |
| 137 | + } |
| 138 | + auto stop_ms = GetCurrentMs(); |
| 139 | + scope->DeleteScope(&sub_scope); |
| 140 | + LOG(INFO) << "Tid: " << tid << ", process " << inputs.size() |
| 141 | + << " samples, avg time per sample: " |
| 142 | + << (stop_ms - start_ms) / inputs.size() << " ms"; |
| 143 | +} |
| 144 | + |
| 145 | +TEST(inference, nlp) { |
| 146 | + if (FLAGS_model_path.empty()) { |
| 147 | + LOG(FATAL) << "Usage: ./example --model_path=path/to/your/model"; |
| 148 | + } |
| 149 | + if (FLAGS_data_file.empty()) { |
| 150 | + LOG(WARNING) << "No data file provided, will use dummy data!" |
| 151 | + << "Note: if you use nlp model, please provide data file."; |
| 152 | + } |
| 153 | + LOG(INFO) << "Model Path: " << FLAGS_model_path; |
| 154 | + LOG(INFO) << "Data File: " << FLAGS_data_file; |
| 155 | + |
| 156 | + std::vector<paddle::framework::LoDTensor> datasets; |
| 157 | + size_t num_total_words = LoadData(&datasets, FLAGS_data_file); |
| 158 | + LOG(INFO) << "Number of samples (seq_len<1024): " << datasets.size(); |
| 159 | + LOG(INFO) << "Total number of words: " << num_total_words; |
| 160 | + |
| 161 | + const bool model_combined = false; |
| 162 | + // 0. Call `paddle::framework::InitDevices()` initialize all the devices |
| 163 | + // 1. Define place, executor, scope |
| 164 | + auto place = paddle::platform::CPUPlace(); |
| 165 | + auto executor = paddle::framework::Executor(place); |
| 166 | + std::unique_ptr<paddle::framework::Scope> scope( |
| 167 | + new paddle::framework::Scope()); |
| 168 | + |
| 169 | + // 2. Initialize the inference_program and load parameters |
| 170 | + std::unique_ptr<paddle::framework::ProgramDesc> inference_program; |
| 171 | + inference_program = |
| 172 | + InitProgram(&executor, scope.get(), FLAGS_model_path, model_combined); |
| 173 | + if (FLAGS_use_mkldnn) { |
| 174 | + EnableMKLDNN(inference_program); |
| 175 | + } |
| 176 | + |
| 177 | +#ifdef PADDLE_WITH_MKLML |
| 178 | + // only use 1 thread number per std::thread |
| 179 | + omp_set_dynamic(0); |
| 180 | + omp_set_num_threads(1); |
| 181 | + mkl_set_num_threads(1); |
| 182 | +#endif |
| 183 | + |
| 184 | + double start_ms = 0, stop_ms = 0; |
| 185 | + if (FLAGS_num_threads > 1) { |
| 186 | + std::vector<std::vector<const paddle::framework::LoDTensor*>> jobs; |
| 187 | + SplitData(datasets, &jobs, FLAGS_num_threads); |
| 188 | + std::vector<std::unique_ptr<std::thread>> threads; |
| 189 | + start_ms = GetCurrentMs(); |
| 190 | + for (int i = 0; i < FLAGS_num_threads; ++i) { |
| 191 | + threads.emplace_back( |
| 192 | + new std::thread(ThreadRunInfer, i, &executor, scope.get(), |
| 193 | + std::ref(inference_program), std::ref(jobs))); |
| 194 | + } |
| 195 | + for (int i = 0; i < FLAGS_num_threads; ++i) { |
| 196 | + threads[i]->join(); |
| 197 | + } |
| 198 | + stop_ms = GetCurrentMs(); |
| 199 | + } else { |
| 200 | + if (FLAGS_prepare_vars) { |
| 201 | + executor.CreateVariables(*inference_program, scope.get(), 0); |
| 202 | + } |
| 203 | + // always prepare context |
| 204 | + std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx; |
| 205 | + ctx = executor.Prepare(*inference_program, 0); |
| 206 | + |
| 207 | + // preapre fetch |
| 208 | + const std::vector<std::string>& fetch_target_names = |
| 209 | + inference_program->GetFetchTargetNames(); |
| 210 | + PADDLE_ENFORCE_EQ(fetch_target_names.size(), 1UL); |
| 211 | + std::map<std::string, paddle::framework::LoDTensor*> fetch_targets; |
| 212 | + paddle::framework::LoDTensor outtensor; |
| 213 | + fetch_targets[fetch_target_names[0]] = &outtensor; |
| 214 | + |
| 215 | + // prepare feed |
| 216 | + const std::vector<std::string>& feed_target_names = |
| 217 | + inference_program->GetFeedTargetNames(); |
| 218 | + PADDLE_ENFORCE_EQ(feed_target_names.size(), 1UL); |
| 219 | + std::map<std::string, const paddle::framework::LoDTensor*> feed_targets; |
| 220 | + |
| 221 | + // feed data and run |
| 222 | + start_ms = GetCurrentMs(); |
| 223 | + for (size_t i = 0; i < datasets.size(); ++i) { |
| 224 | + feed_targets[feed_target_names[0]] = &(datasets[i]); |
| 225 | + executor.RunPreparedContext(ctx.get(), scope.get(), &feed_targets, |
| 226 | + &fetch_targets, !FLAGS_prepare_vars); |
| 227 | + } |
| 228 | + stop_ms = GetCurrentMs(); |
| 229 | + LOG(INFO) << "Tid: 0, process " << datasets.size() |
| 230 | + << " samples, avg time per sample: " |
| 231 | + << (stop_ms - start_ms) / datasets.size() << " ms"; |
| 232 | + } |
| 233 | + LOG(INFO) << "Total inference time with " << FLAGS_num_threads |
| 234 | + << " threads : " << (stop_ms - start_ms) / 1000.0 |
| 235 | + << " sec, QPS: " << datasets.size() / ((stop_ms - start_ms) / 1000); |
| 236 | +} |
0 commit comments