|
| 1 | +import unittest |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import paddle.v2.framework.core as core |
| 5 | +from paddle.v2.framework.op import Operator |
| 6 | + |
| 7 | + |
| 8 | +class TestBeamSearchDecodeOp(unittest.TestCase): |
| 9 | + def setUp(self): |
| 10 | + self.scope = core.Scope() |
| 11 | + self.cpu_place = core.CPUPlace() |
| 12 | + |
| 13 | + def append_lod_tensor(self, tensor_array, lod, data): |
| 14 | + lod_tensor = core.LoDTensor() |
| 15 | + lod_tensor.set_lod(lod) |
| 16 | + lod_tensor.set(data, self.cpu_place) |
| 17 | + tensor_array.append(lod_tensor) |
| 18 | + |
| 19 | + def test_get_set(self): |
| 20 | + ids = self.scope.var("ids").get_lod_tensor_array() |
| 21 | + self.append_lod_tensor( |
| 22 | + ids, [[0, 3, 6], [0, 1, 2, 3, 4, 5, 6]], |
| 23 | + np.array( |
| 24 | + [1, 2, 3, 4, 5, 6], dtype="int64")) |
| 25 | + self.append_lod_tensor( |
| 26 | + ids, [[0, 3, 6], [0, 1, 1, 3, 5, 5, 6]], |
| 27 | + np.array( |
| 28 | + [0, 1, 2, 3, 4, 5], dtype="int64")) |
| 29 | + self.append_lod_tensor( |
| 30 | + ids, [[0, 3, 6], [0, 0, 1, 2, 3, 4, 5]], |
| 31 | + np.array( |
| 32 | + [0, 1, 2, 3, 4], dtype="int64")) |
| 33 | + |
| 34 | + scores = self.scope.var("scores").get_lod_tensor_array() |
| 35 | + self.append_lod_tensor( |
| 36 | + scores, [[0, 3, 6], [0, 1, 2, 3, 4, 5, 6]], |
| 37 | + np.array( |
| 38 | + [1, 2, 3, 4, 5, 6], dtype="float32")) |
| 39 | + self.append_lod_tensor( |
| 40 | + scores, [[0, 3, 6], [0, 1, 1, 3, 5, 5, 6]], |
| 41 | + np.array( |
| 42 | + [0, 1, 2, 3, 4, 5], dtype="float32")) |
| 43 | + self.append_lod_tensor( |
| 44 | + scores, [[0, 3, 6], [0, 0, 1, 2, 3, 4, 5]], |
| 45 | + np.array( |
| 46 | + [0, 1, 2, 3, 4], dtype="float32")) |
| 47 | + |
| 48 | + sentence_ids = self.scope.var("sentence_ids").get_tensor() |
| 49 | + sentence_scores = self.scope.var("sentence_scores").get_tensor() |
| 50 | + |
| 51 | + beam_search_decode_op = Operator( |
| 52 | + "beam_search_decode", |
| 53 | + # inputs |
| 54 | + Ids="ids", |
| 55 | + Scores="scores", |
| 56 | + # outputs |
| 57 | + SentenceIds="sentence_ids", |
| 58 | + SentenceScores="sentence_scores") |
| 59 | + |
| 60 | + ctx = core.DeviceContext.create(self.cpu_place) |
| 61 | + beam_search_decode_op.run(self.scope, ctx) |
| 62 | + |
| 63 | + expected_lod = [[0, 4, 8], [0, 1, 3, 6, 9, 10, 13, 16, 19]] |
| 64 | + self.assertEqual(sentence_ids.lod(), expected_lod) |
| 65 | + self.assertEqual(sentence_scores.lod(), expected_lod) |
| 66 | + |
| 67 | + expected_data = np.array( |
| 68 | + [2, 1, 0, 3, 1, 0, 3, 2, 1, 5, 4, 3, 2, 4, 4, 3, 6, 5, 4], "int64") |
| 69 | + self.assertTrue(np.array_equal(np.array(sentence_ids), expected_data)) |
| 70 | + self.assertTrue( |
| 71 | + np.array_equal(np.array(sentence_scores), expected_data)) |
| 72 | + |
| 73 | + |
| 74 | +if __name__ == '__main__': |
| 75 | + unittest.main() |
0 commit comments