|
| 1 | +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. |
| 2 | +# |
| 3 | +#Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +#you may not use this file except in compliance with the License. |
| 5 | +#You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +#Unless required by applicable law or agreed to in writing, software |
| 10 | +#distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +#See the License for the specific language governing permissions and |
| 13 | +#limitations under the License. |
| 14 | +from __future__ import print_function |
| 15 | +import numpy as np |
| 16 | +import paddle.v2 as paddle |
| 17 | +import paddle.v2.fluid as fluid |
| 18 | +import os |
| 19 | + |
| 20 | +BATCH_SIZE = 128 |
| 21 | +PASS_NUM = 100 |
| 22 | + |
| 23 | +images = fluid.layers.data(name='x', shape=[784], dtype='float32') |
| 24 | + |
| 25 | +# TODO(aroraabhinav) Add regularization and error clipping after |
| 26 | +# Issue 7432(https://github.com/PaddlePaddle/Paddle/issues/7432) is resolved. |
| 27 | +hidden1 = fluid.layers.fc(input=images, size=128, act='relu') |
| 28 | +hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') |
| 29 | +predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') |
| 30 | + |
| 31 | +label = fluid.layers.data(name='y', shape=[1], dtype='int64') |
| 32 | + |
| 33 | +cost = fluid.layers.cross_entropy(input=predict, label=label) |
| 34 | +avg_cost = fluid.layers.mean(x=cost) |
| 35 | + |
| 36 | +optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) |
| 37 | +optimize_ops, params_grads = optimizer.minimize(avg_cost) |
| 38 | + |
| 39 | +accuracy = fluid.evaluator.Accuracy(input=predict, label=label) |
| 40 | + |
| 41 | +train_reader = paddle.batch( |
| 42 | + paddle.reader.shuffle( |
| 43 | + paddle.dataset.mnist.train(), buf_size=8192), |
| 44 | + batch_size=BATCH_SIZE) |
| 45 | + |
| 46 | +place = fluid.CPUPlace() |
| 47 | +exe = fluid.Executor(place) |
| 48 | + |
| 49 | +t = fluid.DistributeTranspiler() |
| 50 | +# all parameter server endpoints list for spliting parameters |
| 51 | +pserver_endpoints = os.getenv("PSERVERS") |
| 52 | +# server endpoint for current node |
| 53 | +current_endpoint = os.getenv("SERVER_ENDPOINT") |
| 54 | +# run as trainer or parameter server |
| 55 | +training_role = os.getenv("TRAINING_ROLE", |
| 56 | + "TRAINER") # get the training role: trainer/pserver |
| 57 | +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) |
| 58 | + |
| 59 | +if training_role == "PSERVER": |
| 60 | + if not current_endpoint: |
| 61 | + print("need env SERVER_ENDPOINT") |
| 62 | + exit(1) |
| 63 | + pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops) |
| 64 | + exe.run(fluid.default_startup_program()) |
| 65 | + exe.run(pserver_prog) |
| 66 | +elif training_role == "TRAINER": |
| 67 | + trainer_prog = t.get_trainer_program() |
| 68 | + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) |
| 69 | + exe.run(fluid.default_startup_program()) |
| 70 | + |
| 71 | + for pass_id in range(PASS_NUM): |
| 72 | + accuracy.reset(exe) |
| 73 | + batch_id = 0 |
| 74 | + for data in train_reader(): |
| 75 | + loss, acc = exe.run(trainer_prog, |
| 76 | + feed=feeder.feed(data), |
| 77 | + fetch_list=[avg_cost] + accuracy.metrics) |
| 78 | + pass_acc = accuracy.eval(exe) |
| 79 | + if batch_id % 100 == 0: |
| 80 | + print("batch_id %d, loss: %f, acc: %f" % |
| 81 | + (batch_id, loss, pass_acc)) |
| 82 | + batch_id += 1 |
| 83 | + |
| 84 | + pass_acc = accuracy.eval(exe) |
| 85 | + print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc)) |
| 86 | +else: |
| 87 | + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") |
0 commit comments