Skip to content

Commit 85a41df

Browse files
committed
Init commit
1 parent 5674409 commit 85a41df

File tree

2 files changed

+226
-0
lines changed

2 files changed

+226
-0
lines changed
Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
//
3+
// Licensed under the Apache License, Version 2.0 (the "License");
4+
// you may not use this file except in compliance with the License.
5+
// You may obtain a copy of the License at
6+
//
7+
// http://www.apache.org/licenses/LICENSE-2.0
8+
//
9+
// Unless required by applicable law or agreed to in writing, software
10+
// distributed under the License is distributed on an "AS IS" BASIS,
11+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
// See the License for the specific language governing permissions and
13+
// limitations under the License.
14+
#include "paddle/fluid/operators/random_crop_op.h"
15+
#include <vector>
16+
17+
namespace paddle {
18+
namespace operators {
19+
class RandomCropOpMaker : public framework::OpProtoAndCheckerMaker {
20+
public:
21+
void Make() override {
22+
AddInput("X", "");
23+
AddOutput("Y", "");
24+
AddInput("Seed", "");
25+
AddOutput("SeedOut", "").AsDispensable();
26+
AddAttr<std::vector<int>>("shape", "");
27+
}
28+
};
29+
30+
class RandomCropOpInferShape : public framework::InferShapeBase {
31+
public:
32+
void operator()(framework::InferShapeContext* context) const override {
33+
auto shape = context->Attrs().Get<std::vector<int>>("shape");
34+
auto x_dim = context->GetInputDim("X");
35+
PADDLE_ENFORCE_EQ(x_dim.size(), static_cast<int64_t>(shape.size()));
36+
for (size_t i = 0; i < shape.size(); ++i) {
37+
if (shape[i] == -1) {
38+
shape[i] = static_cast<int>(x_dim[i]);
39+
} else {
40+
PADDLE_ENFORCE_GE(x_dim[i], shape[i]);
41+
}
42+
}
43+
context->SetOutputDim("Y", framework::make_ddim(shape));
44+
context->SetOutputDim("SeedOut", framework::make_ddim({1}));
45+
}
46+
};
47+
48+
} // namespace operators
49+
} // namespace paddle
50+
51+
namespace ops = paddle::operators;
52+
namespace f = paddle::framework;
53+
REGISTER_OPERATOR(random_crop, f::OperatorWithKernel, ops::RandomCropOpMaker,
54+
ops::RandomCropOpInferShape);
55+
template <typename T>
56+
using Kernel = ops::RandomCropKernel<paddle::platform::CPUDeviceContext, T>;
57+
58+
REGISTER_OP_CPU_KERNEL(random_crop, Kernel<float>, Kernel<int>, Kernel<double>,
59+
Kernel<uint8_t>, Kernel<int16_t>);
Lines changed: 167 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,167 @@
1+
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
//
3+
// Licensed under the Apache License, Version 2.0 (the "License");
4+
// you may not use this file except in compliance with the License.
5+
// You may obtain a copy of the License at
6+
//
7+
// http://www.apache.org/licenses/LICENSE-2.0
8+
//
9+
// Unless required by applicable law or agreed to in writing, software
10+
// distributed under the License is distributed on an "AS IS" BASIS,
11+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
// See the License for the specific language governing permissions and
13+
// limitations under the License.
14+
15+
#pragma once
16+
17+
#include "paddle/fluid/framework/op_registry.h"
18+
#include "paddle/fluid/operators/detail/safe_ref.h"
19+
#include "paddle/fluid/platform/device_context.h"
20+
#include "paddle/fluid/platform/for_range.h"
21+
#include "thrust/random.h"
22+
23+
namespace paddle {
24+
namespace operators {
25+
26+
template <typename DeviceContext>
27+
struct Random;
28+
29+
template <>
30+
struct Random<platform::CPUDeviceContext> {
31+
using Engine = std::minstd_rand;
32+
33+
template <typename T>
34+
using UniformIntDist = std::uniform_int_distribution<T>;
35+
};
36+
37+
template <>
38+
struct Random<platform::CUDADeviceContext> {
39+
using Engine = thrust::minstd_rand;
40+
41+
template <typename T>
42+
using UniformIntDist = thrust::uniform_int_distribution<T>;
43+
};
44+
45+
template <typename T>
46+
HOSTDEVICE inline void RandomCropImpl(const T* x, size_t* x_dim, T* out,
47+
size_t* out_dim, int i, int rank,
48+
int64_t prod_x_remain,
49+
int64_t prod_out_remain, size_t* offset) {
50+
size_t x_length = x_dim[rank];
51+
size_t out_length = out_dim[rank];
52+
53+
int64_t x_stride = prod_x_remain / x_length;
54+
int64_t out_stride = prod_out_remain / out_length;
55+
size_t offset_i = offset[i];
56+
if (x_stride == 1 && out_stride == 1) {
57+
// In the final stage, copy from offset.
58+
x += offset_i;
59+
for (size_t i = 0; i < out_length; ++i) {
60+
*out++ = *x++;
61+
}
62+
} else {
63+
x += offset_i * x_stride;
64+
for (size_t i = 0; i < out_length; ++i) {
65+
RandomCropImpl<T>(x, x_dim, out, out_dim, i + 1, rank, x_stride,
66+
out_stride, offset);
67+
x += x_stride;
68+
out += out_stride;
69+
}
70+
}
71+
}
72+
73+
template <typename DeviceContext, typename T>
74+
struct RandomCropFunctor {
75+
const T* x_;
76+
T* out_;
77+
size_t x_dim_[9];
78+
size_t out_dim_[9];
79+
size_t prod_same_dim_;
80+
81+
size_t prod_x_dim_;
82+
size_t prod_out_dim_;
83+
84+
int num_same_dim_;
85+
int rank_;
86+
87+
int64_t seed_;
88+
89+
RandomCropFunctor(const T* x, T* out, int64_t seed)
90+
: x_(x),
91+
out_(out),
92+
prod_same_dim_(1),
93+
prod_x_dim_(1),
94+
prod_out_dim_(1),
95+
seed_(seed) {
96+
std::fill(x_dim_, x_dim_ + sizeof(x_dim_) / sizeof(size_t), 0);
97+
std::fill(out_dim_, out_dim_ + sizeof(out_dim_) / sizeof(size_t), 0);
98+
}
99+
100+
HOSTDEVICE void operator()(size_t i) {
101+
typename Random<DeviceContext>::Engine engine(seed_);
102+
engine.discard(i * (rank_ - num_same_dim_));
103+
104+
int64_t prod_x_unsame = (prod_x_dim_ / prod_same_dim_);
105+
int64_t prod_out_unsame = (prod_out_dim_ / prod_same_dim_);
106+
107+
const T* x = x_ + i * prod_x_unsame;
108+
T* out = out_ + i * prod_out_unsame;
109+
110+
size_t offset[9];
111+
for (int i = num_same_dim_; i < rank_; ++i) {
112+
typename Random<DeviceContext>::template UniformIntDist<size_t> dist(
113+
0, x_dim_[i] - out_dim_[i]);
114+
offset[i] = dist(engine);
115+
}
116+
RandomCropImpl<T>(x, x_dim_, out, out_dim_, num_same_dim_, rank_,
117+
prod_x_unsame, prod_out_unsame, offset);
118+
}
119+
};
120+
121+
template <typename DeviceContext, typename T>
122+
class RandomCropKernel : public framework::OpKernel<T> {
123+
public:
124+
virtual void Compute(const framework::ExecutionContext& context) const {
125+
int64_t seed =
126+
*context.Input<framework::LoDTensor>("Seed")->data<int64_t>();
127+
auto& x = detail::Ref(context.Input<framework::LoDTensor>("X"));
128+
auto& out = detail::Ref(context.Output<framework::LoDTensor>("Out"));
129+
130+
RandomCropFunctor<DeviceContext, T> functor{
131+
x.data<T>(), out.mutable_data<T>(context.GetPlace()), seed};
132+
133+
auto& out_dim = out.dims();
134+
auto& x_dim = x.dims();
135+
136+
auto rank = x_dim.size();
137+
while (rank-- > 0) {
138+
functor.x_dim_[rank] = x_dim[rank];
139+
functor.out_dim_[rank] = out_dim[rank];
140+
functor.prod_x_dim_ *= x_dim[rank];
141+
functor.prod_out_dim_ *= out_dim[rank];
142+
if (x_dim[rank] != out_dim[rank]) {
143+
PADDLE_ENFORCE_EQ(functor.prod_same_dim_, 1);
144+
functor.num_same_dim_ = rank;
145+
} else {
146+
functor.prod_same_dim_ *= out_dim[rank];
147+
}
148+
}
149+
functor.rank_ = x_dim.size();
150+
151+
platform::ForRange<DeviceContext> for_range(
152+
context.template device_context<DeviceContext>(),
153+
functor.prod_same_dim_);
154+
155+
for_range(functor);
156+
157+
Random<platform::CPUDeviceContext>::Engine engine(seed);
158+
engine.discard(functor.prod_same_dim_ *
159+
(functor.rank_ - functor.num_same_dim_));
160+
161+
*context.Output<framework::LoDTensor>("SeedOut")->mutable_data<int64_t>(
162+
platform::CPUPlace()) = engine();
163+
}
164+
};
165+
166+
} // namespace operators
167+
} // namespace paddle

0 commit comments

Comments
 (0)