|
| 1 | +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import print_function |
| 16 | + |
| 17 | +import paddle |
| 18 | +import paddle.fluid as fluid |
| 19 | +import numpy |
| 20 | + |
| 21 | +WORD_DICT, VERB_DICT, LABEL_DICT = paddle.dataset.conll05.get_dict() |
| 22 | +WORD_DICT_LEN = len(WORD_DICT) |
| 23 | +LABEL_DICT_LEN = len(LABEL_DICT) |
| 24 | +PRED_DICT_LEN = len(VERB_DICT) |
| 25 | +MARK_DICT_LEN = 2 |
| 26 | + |
| 27 | + |
| 28 | +def lstm_net(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark): |
| 29 | + WORD_DIM = 32 |
| 30 | + MARK_DIM = 5 |
| 31 | + HIDDEN_DIM = 512 |
| 32 | + DEPTH = 8 |
| 33 | + EMBEDDING_NAME = 'emb' |
| 34 | + |
| 35 | + # Data definitions |
| 36 | + word = fluid.layers.data( |
| 37 | + name='word_data', shape=[1], dtype='int64', lod_level=1) |
| 38 | + predicate = fluid.layers.data( |
| 39 | + name='verb_data', shape=[1], dtype='int64', lod_level=1) |
| 40 | + ctx_n2 = fluid.layers.data( |
| 41 | + name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1) |
| 42 | + ctx_n1 = fluid.layers.data( |
| 43 | + name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1) |
| 44 | + ctx_0 = fluid.layers.data( |
| 45 | + name='ctx_0_data', shape=[1], dtype='int64', lod_level=1) |
| 46 | + ctx_p1 = fluid.layers.data( |
| 47 | + name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1) |
| 48 | + ctx_p2 = fluid.layers.data( |
| 49 | + name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1) |
| 50 | + mark = fluid.layers.data( |
| 51 | + name='mark_data', shape=[1], dtype='int64', lod_level=1) |
| 52 | + |
| 53 | + # 8 features |
| 54 | + predicate_embedding = fluid.layers.embedding( |
| 55 | + input=predicate, |
| 56 | + size=[PRED_DICT_LEN, WORD_DIM], |
| 57 | + dtype='float32', |
| 58 | + is_sparse=IS_SPARSE, |
| 59 | + param_attr='vemb') |
| 60 | + |
| 61 | + mark_embedding = fluid.layers.embedding( |
| 62 | + input=mark, |
| 63 | + size=[MARK_DICT_LEN, MARK_DIM], |
| 64 | + dtype='float32', |
| 65 | + is_sparse=IS_SPARSE) |
| 66 | + |
| 67 | + word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] |
| 68 | + emb_layers = [ |
| 69 | + fluid.layers.embedding( |
| 70 | + size=[WORD_DICT_LEN, WORD_DIM], |
| 71 | + input=x, |
| 72 | + param_attr=fluid.ParamAttr( |
| 73 | + name=EMBEDDING_NAME, trainable=False)) for x in word_input |
| 74 | + ] |
| 75 | + emb_layers.append(predicate_embedding) |
| 76 | + emb_layers.append(mark_embedding) |
| 77 | + |
| 78 | + hidden_0_layers = [ |
| 79 | + fluid.layers.fc(input=emb, size=HIDDEN_DIM, act='tanh') |
| 80 | + for emb in emb_layers |
| 81 | + ] |
| 82 | + |
| 83 | + hidden_0 = fluid.layers.sums(input=hidden_0_layers) |
| 84 | + |
| 85 | + lstm_0 = fluid.layers.dynamic_lstm( |
| 86 | + input=hidden_0, |
| 87 | + size=HIDDEN_DIM, |
| 88 | + candidate_activation='relu', |
| 89 | + gate_activation='sigmoid', |
| 90 | + cell_activation='sigmoid') |
| 91 | + |
| 92 | + # stack L-LSTM and R-LSTM with direct edges |
| 93 | + input_tmp = [hidden_0, lstm_0] |
| 94 | + |
| 95 | + for i in range(1, DEPTH): |
| 96 | + mix_hidden = fluid.layers.sums(input=[ |
| 97 | + fluid.layers.fc(input=input_tmp[0], size=HIDDEN_DIM, act='tanh'), |
| 98 | + fluid.layers.fc(input=input_tmp[1], size=HIDDEN_DIM, act='tanh') |
| 99 | + ]) |
| 100 | + |
| 101 | + lstm = fluid.layers.dynamic_lstm( |
| 102 | + input=mix_hidden, |
| 103 | + size=HIDDEN_DIM, |
| 104 | + candidate_activation='relu', |
| 105 | + gate_activation='sigmoid', |
| 106 | + cell_activation='sigmoid', |
| 107 | + is_reverse=((i % 2) == 1)) |
| 108 | + |
| 109 | + input_tmp = [mix_hidden, lstm] |
| 110 | + |
| 111 | + feature_out = fluid.layers.sums(input=[ |
| 112 | + fluid.layers.fc(input=input_tmp[0], size=LABEL_DICT_LEN, act='tanh'), |
| 113 | + fluid.layers.fc(input=input_tmp[1], size=LABEL_DICT_LEN, act='tanh') |
| 114 | + ]) |
| 115 | + |
| 116 | + return feature_out |
| 117 | + |
| 118 | + |
| 119 | +def inference_network(): |
| 120 | + predict = lstm_net(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, |
| 121 | + mark) |
| 122 | + |
| 123 | + crf_decode = fluid.layers.crf_decoding( |
| 124 | + input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) |
| 125 | + |
| 126 | + return crf_decode |
| 127 | + |
| 128 | + |
| 129 | +def train_network(): |
| 130 | + MIX_HIDDEN_LR = 1e-3 |
| 131 | + |
| 132 | + predict = lstm_net(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, |
| 133 | + mark) |
| 134 | + target = fluid.layers.data( |
| 135 | + name='target', shape=[1], dtype='int64', lod_level=1) |
| 136 | + crf_cost = fluid.layers.linear_chain_crf( |
| 137 | + input=predict, |
| 138 | + label=target, |
| 139 | + param_attr=fluid.ParamAttr( |
| 140 | + name='crfw', learning_rate=MIX_HIDDEN_LR)) |
| 141 | + avg_cost = fluid.layers.mean(crf_cost) |
| 142 | + |
| 143 | + return avg_cost |
| 144 | + |
| 145 | + |
| 146 | +def train(use_cuda, save_path): |
| 147 | + BATCH_SIZE = 128 |
| 148 | + EPOCH_NUM = 1 |
| 149 | + |
| 150 | + train_reader = paddle.batch( |
| 151 | + paddle.reader.shuffle( |
| 152 | + paddle.dataset.conll05.train(), buf_size=8192), |
| 153 | + batch_size=BATCH_SIZE) |
| 154 | + test_reader = paddle.batch( |
| 155 | + paddle.dataset.conll05.test(), batch_size=BATCH_SIZE) |
| 156 | + |
| 157 | + def event_handler(event): |
| 158 | + if isinstance(event, fluid.EndIteration): |
| 159 | + if (event.batch_id % 10) == 0: |
| 160 | + avg_cost = trainer.test(reader=test_reader) |
| 161 | + |
| 162 | + print('BatchID {0:04}, Loss {1:2.2}'.format(event.batch_id + 1, |
| 163 | + avg_cost)) |
| 164 | + |
| 165 | + if avg_cost > 0.01: # Low threshold for speeding up CI |
| 166 | + trainer.save_params(save_path) |
| 167 | + return |
| 168 | + |
| 169 | + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() |
| 170 | + sgd_optimizer = fluid.optimizer.SGD( |
| 171 | + learning_rate=fluid.layers.exponential_decay( |
| 172 | + learning_rate=0.01, |
| 173 | + decay_steps=100000, |
| 174 | + decay_rate=0.5, |
| 175 | + staircase=True)) |
| 176 | + trainer = fluid.Trainer(train_network, optimizer=sgd_optimizer, place=place) |
| 177 | + trainer.train(train_reader, EPOCH_NUM, event_handler=event_handler) |
| 178 | + |
| 179 | + |
| 180 | +def infer(use_cuda, save_path): |
| 181 | + place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() |
| 182 | + inferencer = fluid.Inferencer( |
| 183 | + inference_program, param_path=save_path, place=place) |
| 184 | + |
| 185 | + def create_random_lodtensor(lod, place, low, high): |
| 186 | + data = np.random.random_integers(low, high, |
| 187 | + [lod[-1], 1]).astype("int64") |
| 188 | + res = fluid.LoDTensor() |
| 189 | + res.set(data, place) |
| 190 | + res.set_lod([lod]) |
| 191 | + return res |
| 192 | + |
| 193 | + # Create an input example |
| 194 | + lod = [0, 4, 10] |
| 195 | + word = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1) |
| 196 | + pred = create_random_lodtensor(lod, place, low=0, high=PRED_DICT_LEN - 1) |
| 197 | + ctx_n2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1) |
| 198 | + ctx_n1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1) |
| 199 | + ctx_0 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1) |
| 200 | + ctx_p1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1) |
| 201 | + ctx_p2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1) |
| 202 | + mark = create_random_lodtensor(lod, place, low=0, high=MARK_DICT_LEN - 1) |
| 203 | + |
| 204 | + results = inferencer.infer({ |
| 205 | + 'word_data': word, |
| 206 | + 'verb_data': pred, |
| 207 | + 'ctx_n2_data': ctx_n2, |
| 208 | + 'ctx_n1_data': ctx_n1, |
| 209 | + 'ctx_0_data': ctx_0, |
| 210 | + 'ctx_p1_data': ctx_p1, |
| 211 | + 'ctx_p2_data': ctx_p2, |
| 212 | + 'mark_data': mark |
| 213 | + }) |
| 214 | + |
| 215 | + print("infer results: ", results) |
| 216 | + |
| 217 | + |
| 218 | +def main(use_cuda): |
| 219 | + if use_cuda and not fluid.core.is_compiled_with_cuda(): |
| 220 | + return |
| 221 | + save_path = "label_semantic_roles.inference.model" |
| 222 | + train(use_cuda, save_path) |
| 223 | + infer(use_cuda, save_path) |
| 224 | + |
| 225 | + |
| 226 | +if __name__ == '__main__': |
| 227 | + for use_cuda in (False, True): |
| 228 | + main(use_cuda=use_cuda) |
0 commit comments