|
| 1 | +# copyright (c) 2019 paddlepaddle authors. all rights reserved. |
| 2 | +# |
| 3 | +# licensed under the apache license, version 2.0 (the "license"); |
| 4 | +# you may not use this file except in compliance with the license. |
| 5 | +# you may obtain a copy of the license at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/license-2.0 |
| 8 | +# |
| 9 | +# unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the license is distributed on an "as is" basis, |
| 11 | +# without warranties or conditions of any kind, either express or implied. |
| 12 | +# see the license for the specific language governing permissions and |
| 13 | +# limitations under the license. |
| 14 | +import unittest |
| 15 | +import os |
| 16 | +import numpy as np |
| 17 | +import time |
| 18 | +import sys |
| 19 | +import random |
| 20 | +import functools |
| 21 | +import contextlib |
| 22 | +from PIL import Image, ImageEnhance |
| 23 | +import math |
| 24 | +from paddle.dataset.common import download |
| 25 | + |
| 26 | +random.seed(0) |
| 27 | +np.random.seed(0) |
| 28 | + |
| 29 | +DATA_DIM = 224 |
| 30 | + |
| 31 | +SIZE_FLOAT32 = 4 |
| 32 | +SIZE_INT64 = 8 |
| 33 | + |
| 34 | +img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) |
| 35 | +img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) |
| 36 | + |
| 37 | + |
| 38 | +def resize_short(img, target_size): |
| 39 | + percent = float(target_size) / min(img.size[0], img.size[1]) |
| 40 | + resized_width = int(round(img.size[0] * percent)) |
| 41 | + resized_height = int(round(img.size[1] * percent)) |
| 42 | + img = img.resize((resized_width, resized_height), Image.LANCZOS) |
| 43 | + return img |
| 44 | + |
| 45 | + |
| 46 | +def crop_image(img, target_size, center): |
| 47 | + width, height = img.size |
| 48 | + size = target_size |
| 49 | + if center == True: |
| 50 | + w_start = (width - size) / 2 |
| 51 | + h_start = (height - size) / 2 |
| 52 | + else: |
| 53 | + w_start = np.random.randint(0, width - size + 1) |
| 54 | + h_start = np.random.randint(0, height - size + 1) |
| 55 | + w_end = w_start + size |
| 56 | + h_end = h_start + size |
| 57 | + img = img.crop((w_start, h_start, w_end, h_end)) |
| 58 | + return img |
| 59 | + |
| 60 | + |
| 61 | +def process_image(img_path, mode, color_jitter, rotate): |
| 62 | + img = Image.open(img_path) |
| 63 | + img = resize_short(img, target_size=256) |
| 64 | + img = crop_image(img, target_size=DATA_DIM, center=True) |
| 65 | + if img.mode != 'RGB': |
| 66 | + img = img.convert('RGB') |
| 67 | + img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255 |
| 68 | + img -= img_mean |
| 69 | + img /= img_std |
| 70 | + return img |
| 71 | + |
| 72 | + |
| 73 | +def download_unzip(): |
| 74 | + int8_download = 'int8/download' |
| 75 | + |
| 76 | + target_name = 'data' |
| 77 | + |
| 78 | + cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + |
| 79 | + int8_download) |
| 80 | + |
| 81 | + target_folder = os.path.join(cache_folder, target_name) |
| 82 | + |
| 83 | + data_urls = [] |
| 84 | + data_md5s = [] |
| 85 | + |
| 86 | + data_urls.append( |
| 87 | + 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa' |
| 88 | + ) |
| 89 | + data_md5s.append('60f6525b0e1d127f345641d75d41f0a8') |
| 90 | + data_urls.append( |
| 91 | + 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab' |
| 92 | + ) |
| 93 | + data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5') |
| 94 | + |
| 95 | + file_names = [] |
| 96 | + |
| 97 | + for i in range(0, len(data_urls)): |
| 98 | + download(data_urls[i], cache_folder, data_md5s[i]) |
| 99 | + file_names.append(data_urls[i].split('/')[-1]) |
| 100 | + |
| 101 | + zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz') |
| 102 | + |
| 103 | + if not os.path.exists(zip_path): |
| 104 | + cat_command = 'cat' |
| 105 | + for file_name in file_names: |
| 106 | + cat_command += ' ' + os.path.join(cache_folder, file_name) |
| 107 | + cat_command += ' > ' + zip_path |
| 108 | + os.system(cat_command) |
| 109 | + print('Data is downloaded at {0}\n').format(zip_path) |
| 110 | + |
| 111 | + if not os.path.exists(target_folder): |
| 112 | + cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) |
| 113 | + os.system(cmd) |
| 114 | + print('Data is unzipped at {0}\n'.format(target_folder)) |
| 115 | + |
| 116 | + data_dir = os.path.join(target_folder, 'ILSVRC2012') |
| 117 | + print('ILSVRC2012 full val set at {0}\n'.format(data_dir)) |
| 118 | + return data_dir |
| 119 | + |
| 120 | + |
| 121 | +def reader(): |
| 122 | + data_dir = download_unzip() |
| 123 | + file_list = os.path.join(data_dir, 'val_list.txt') |
| 124 | + output_file = os.path.join(data_dir, 'int8_full_val.bin') |
| 125 | + with open(file_list) as flist: |
| 126 | + lines = [line.strip() for line in flist] |
| 127 | + num_images = len(lines) |
| 128 | + if not os.path.exists(output_file): |
| 129 | + print( |
| 130 | + 'Preprocessing to binary file...<num_images><all images><all labels>...\n' |
| 131 | + ) |
| 132 | + with open(output_file, "w+b") as of: |
| 133 | + #save num_images(int64_t) to file |
| 134 | + of.seek(0) |
| 135 | + num = np.array(int(num_images)).astype('int64') |
| 136 | + of.write(num.tobytes()) |
| 137 | + for idx, line in enumerate(lines): |
| 138 | + img_path, label = line.split() |
| 139 | + img_path = os.path.join(data_dir, img_path) |
| 140 | + if not os.path.exists(img_path): |
| 141 | + continue |
| 142 | + |
| 143 | + #save image(float32) to file |
| 144 | + img = process_image( |
| 145 | + img_path, 'val', color_jitter=False, rotate=False) |
| 146 | + np_img = np.array(img) |
| 147 | + of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 |
| 148 | + * idx) |
| 149 | + of.write(np_img.astype('float32').tobytes()) |
| 150 | + |
| 151 | + #save label(int64_t) to file |
| 152 | + label_int = (int)(label) |
| 153 | + np_label = np.array(label_int) |
| 154 | + of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 |
| 155 | + * num_images + idx * SIZE_INT64) |
| 156 | + of.write(np_label.astype('int64').tobytes()) |
| 157 | + |
| 158 | + print('The preprocessed binary file path {}\n'.format(output_file)) |
| 159 | + |
| 160 | + |
| 161 | +if __name__ == '__main__': |
| 162 | + reader() |
0 commit comments