Skip to content

Commit 90ad06c

Browse files
committed
Add ut files
1 parent 192b6d6 commit 90ad06c

File tree

1 file changed

+201
-0
lines changed

1 file changed

+201
-0
lines changed
Lines changed: 201 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,201 @@
1+
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
from __future__ import print_function
16+
17+
import contextlib
18+
import unittest
19+
import numpy as np
20+
import six
21+
22+
import paddle
23+
import paddle.fluid as fluid
24+
from paddle.fluid import core
25+
from paddle.fluid.optimizer import SGDOptimizer
26+
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
27+
from paddle.fluid.dygraph.base import to_variable
28+
from test_imperative_base import new_program_scope
29+
30+
31+
class SimpleImgConvPool(fluid.dygraph.Layer):
32+
def __init__(self,
33+
name_scope,
34+
num_channels,
35+
num_filters,
36+
filter_size,
37+
pool_size,
38+
pool_stride,
39+
pool_padding=0,
40+
pool_type='max',
41+
global_pooling=False,
42+
conv_stride=1,
43+
conv_padding=0,
44+
conv_dilation=1,
45+
conv_groups=1,
46+
act=None,
47+
use_cudnn=False,
48+
param_attr=None,
49+
bias_attr=None):
50+
super(SimpleImgConvPool, self).__init__(name_scope)
51+
52+
self._conv2d = Conv2D(
53+
self.full_name(),
54+
num_channels=num_channels,
55+
num_filters=num_filters,
56+
filter_size=filter_size,
57+
stride=conv_stride,
58+
padding=conv_padding,
59+
dilation=conv_dilation,
60+
groups=conv_groups,
61+
param_attr=None,
62+
bias_attr=None,
63+
use_cudnn=use_cudnn)
64+
65+
self._pool2d = Pool2D(
66+
self.full_name(),
67+
pool_size=pool_size,
68+
pool_type=pool_type,
69+
pool_stride=pool_stride,
70+
pool_padding=pool_padding,
71+
global_pooling=global_pooling,
72+
use_cudnn=use_cudnn)
73+
74+
def forward(self, inputs):
75+
x = self._conv2d(inputs)
76+
x = self._pool2d(x)
77+
return x
78+
79+
80+
class MNIST(fluid.dygraph.Layer):
81+
def __init__(self, name_scope):
82+
super(MNIST, self).__init__(name_scope)
83+
84+
self._simple_img_conv_pool_1 = SimpleImgConvPool(
85+
self.full_name(), 1, 20, 5, 2, 2, act="relu")
86+
87+
self._simple_img_conv_pool_2 = SimpleImgConvPool(
88+
self.full_name(), 20, 50, 5, 2, 2, act="relu")
89+
90+
pool_2_shape = 50 * 4 * 4
91+
SIZE = 10
92+
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
93+
self._fc = FC(self.full_name(),
94+
10,
95+
param_attr=fluid.param_attr.ParamAttr(
96+
initializer=fluid.initializer.NormalInitializer(
97+
loc=0.0, scale=scale)),
98+
act="softmax")
99+
100+
def forward(self, inputs):
101+
x = self._simple_img_conv_pool_1(inputs)
102+
x = self._simple_img_conv_pool_2(x)
103+
x = self._fc(x)
104+
return x
105+
106+
107+
class TestDygraphMultiForward(unittest.TestCase):
108+
def test_mnist_forward_float32(self):
109+
seed = 90
110+
epoch_num = 1
111+
with fluid.dygraph.guard():
112+
fluid.default_startup_program().random_seed = seed
113+
fluid.default_main_program().random_seed = seed
114+
115+
mnist = MNIST("mnist")
116+
sgd = SGDOptimizer(learning_rate=1e-3)
117+
train_reader = paddle.batch(
118+
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
119+
120+
dy_param_init_value = {}
121+
mnist.eval()
122+
for epoch in range(epoch_num):
123+
for batch_id, data in enumerate(train_reader()):
124+
dy_x_data = np.array(
125+
[x[0].reshape(1, 28, 28)
126+
for x in data]).astype('float32')
127+
y_data = np.array(
128+
[x[1] for x in data]).astype('int64').reshape(128, 1)
129+
130+
img = to_variable(dy_x_data)
131+
label = to_variable(y_data)
132+
label.stop_gradient = True
133+
134+
cost = mnist(img)
135+
loss = fluid.layers.cross_entropy(cost, label)
136+
avg_loss = fluid.layers.mean(loss)
137+
138+
dy_out = avg_loss.numpy()
139+
140+
if epoch == 0 and batch_id == 0:
141+
for param in mnist.parameters():
142+
dy_param_init_value[param.name] = param.numpy()
143+
144+
with new_program_scope():
145+
fluid.default_startup_program().random_seed = seed
146+
fluid.default_main_program().random_seed = seed
147+
148+
exe = fluid.Executor(fluid.CPUPlace(
149+
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
150+
151+
mnist = MNIST("mnist")
152+
sgd = SGDOptimizer(learning_rate=1e-3)
153+
train_reader = paddle.batch(
154+
paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
155+
156+
img = fluid.layers.data(
157+
name='pixel', shape=[1, 28, 28], dtype='float32')
158+
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
159+
cost = mnist(img)
160+
loss = fluid.layers.cross_entropy(cost, label)
161+
avg_loss = fluid.layers.mean(loss)
162+
163+
# initialize params and fetch them
164+
static_param_init_value = {}
165+
static_param_name_list = []
166+
for param in mnist.parameters():
167+
static_param_name_list.append(param.name)
168+
169+
out = exe.run(fluid.default_startup_program(),
170+
fetch_list=static_param_name_list)
171+
172+
for i in range(len(static_param_name_list)):
173+
static_param_init_value[static_param_name_list[i]] = out[i]
174+
175+
for epoch in range(epoch_num):
176+
for batch_id, data in enumerate(train_reader()):
177+
static_x_data = np.array(
178+
[x[0].reshape(1, 28, 28)
179+
for x in data]).astype('float32')
180+
y_data = np.array(
181+
[x[1] for x in data]).astype('int64').reshape([128, 1])
182+
183+
fetch_list = [avg_loss.name]
184+
out = exe.run(
185+
fluid.default_main_program(),
186+
feed={"pixel": static_x_data,
187+
"label": y_data},
188+
fetch_list=fetch_list)
189+
190+
static_out = out[0]
191+
192+
self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
193+
194+
for key, value in six.iteritems(static_param_init_value):
195+
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
196+
197+
self.assertTrue(np.allclose(static_out, dy_out))
198+
199+
200+
if __name__ == '__main__':
201+
unittest.main()

0 commit comments

Comments
 (0)