Skip to content

Commit 94b66bd

Browse files
authored
Merge pull request #13326 from luotao1/analysis_test_refine
refine Analysis test
2 parents 76e9227 + 9664c53 commit 94b66bd

File tree

8 files changed

+368
-345
lines changed

8 files changed

+368
-345
lines changed

paddle/fluid/inference/CMakeLists.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,7 @@ if(NOT APPLE)
5555
endif()
5656

5757
if(WITH_TESTING)
58-
# both tests/book and analysis depends the models that generated by python/paddle/fluid/tests/book
58+
# tests/book depends the models that generated by python/paddle/fluid/tests/book
5959
add_subdirectory(tests/book)
60+
add_subdirectory(tests/api)
6061
endif()

paddle/fluid/inference/analysis/CMakeLists.txt

Lines changed: 1 addition & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -40,27 +40,7 @@ function (inference_analysis_test TARGET)
4040
endif(WITH_TESTING)
4141
endfunction(inference_analysis_test)
4242

43-
function (inference_download_and_uncompress install_dir url gz_filename)
44-
message(STATUS "Download inference test stuff ${gz_filename} from ${url}")
45-
execute_process(COMMAND bash -c "mkdir -p ${install_dir}")
46-
execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}")
47-
execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${gz_filename}")
48-
message(STATUS "finish downloading ${gz_filename}")
49-
endfunction(inference_download_and_uncompress)
50-
51-
set(RNN1_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/rnn1%2Fmodel.tar.gz")
52-
set(RNN1_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/rnn1%2Fdata.txt.tar.gz")
53-
set(RNN1_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/rnn1" CACHE PATH "RNN1 model and data root." FORCE)
54-
if (NOT EXISTS ${RNN1_INSTALL_DIR} AND WITH_TESTING)
55-
inference_download_and_uncompress(${RNN1_INSTALL_DIR} ${RNN1_MODEL_URL} "rnn1%2Fmodel.tar.gz")
56-
inference_download_and_uncompress(${RNN1_INSTALL_DIR} ${RNN1_DATA_URL} "rnn1%2Fdata.txt.tar.gz")
57-
endif()
58-
59-
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc
60-
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
61-
ARGS --infer_model=${RNN1_INSTALL_DIR}/model
62-
--infer_data=${RNN1_INSTALL_DIR}/data.txt)
63-
43+
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS paddle_inference_api)
6444
inference_analysis_test(test_data_flow_graph SRCS data_flow_graph_tester.cc)
6545
inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc)
6646
inference_analysis_test(test_fluid_to_ir_pass SRCS fluid_to_ir_pass_tester.cc)
@@ -71,46 +51,3 @@ inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_
7151
inference_analysis_test(test_pass_manager SRCS pass_manager_tester.cc)
7252
inference_analysis_test(test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc)
7353
inference_analysis_test(test_model_store_pass SRCS model_store_pass_tester.cc)
74-
75-
set(CHINESE_NER_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner_model.tar.gz")
76-
set(CHINESE_NER_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner-data.txt.tar.gz")
77-
set(CHINESE_NER_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/chinese_ner" CACHE PATH "Chinese ner model and data root." FORCE)
78-
if (NOT EXISTS ${CHINESE_NER_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE)
79-
inference_download_and_uncompress(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_MODEL_URL} "chinese_ner_model.tar.gz")
80-
inference_download_and_uncompress(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_DATA_URL} "chinese_ner-data.txt.tar.gz")
81-
endif()
82-
83-
inference_analysis_test(test_analyzer_ner SRCS analyzer_ner_tester.cc
84-
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
85-
ARGS --infer_model=${CHINESE_NER_INSTALL_DIR}/model
86-
--infer_data=${CHINESE_NER_INSTALL_DIR}/data.txt)
87-
88-
set(LAC_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/lac_model.tar.gz")
89-
set(LAC_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/lac_data.txt.tar.gz")
90-
set(LAC_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/lac" CACHE PATH "LAC model and data root." FORCE)
91-
if (NOT EXISTS ${LAC_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE)
92-
inference_download_and_uncompress(${LAC_INSTALL_DIR} ${LAC_MODEL_URL} "lac_model.tar.gz")
93-
inference_download_and_uncompress(${LAC_INSTALL_DIR} ${LAC_DATA_URL} "lac_data.txt.tar.gz")
94-
endif()
95-
96-
inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc
97-
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
98-
ARGS --infer_model=${LAC_INSTALL_DIR}/model
99-
--infer_data=${LAC_INSTALL_DIR}/data.txt)
100-
101-
102-
set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz")
103-
set(TEXT_CLASSIFICATION_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz")
104-
set(TEXT_CLASSIFICATION_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/text_classification" CACHE PATH "Text Classification model and data root." FORCE)
105-
106-
if (NOT EXISTS ${TEXT_CLASSIFICATION_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE)
107-
inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_MODEL_URL} "text-classification-Senta.tar.gz")
108-
inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_DATA_URL} "text_classification_data.txt.tar.gz")
109-
endif()
110-
111-
inference_analysis_test(test_text_classification SRCS analyzer_text_classification_tester.cc
112-
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
113-
ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta
114-
--infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt
115-
--topn=1 # Just run top 1 batch.
116-
)

paddle/fluid/inference/analysis/analyzer_tester.cc

Lines changed: 2 additions & 280 deletions
Original file line numberDiff line numberDiff line change
@@ -16,21 +16,9 @@
1616

1717
#include <google/protobuf/text_format.h>
1818
#include <gtest/gtest.h>
19-
#include <thread> // NOLINT
20-
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
21-
#include "paddle/fluid/framework/ir/pass.h"
2219
#include "paddle/fluid/inference/analysis/ut_helper.h"
23-
#include "paddle/fluid/inference/api/analysis_predictor.h"
24-
#include "paddle/fluid/inference/api/helper.h"
2520
#include "paddle/fluid/inference/api/paddle_inference_api.h"
2621
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
27-
#include "paddle/fluid/inference/utils/singleton.h"
28-
29-
DEFINE_string(infer_model, "", "model path");
30-
DEFINE_string(infer_data, "", "data path");
31-
DEFINE_int32(batch_size, 10, "batch size.");
32-
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
33-
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
3422

3523
namespace paddle {
3624
namespace inference {
@@ -91,274 +79,8 @@ void TestWord2vecPrediction(const std::string &model_path) {
9179
}
9280
}
9381

94-
namespace {
95-
96-
struct DataRecord {
97-
std::vector<std::vector<std::vector<float>>> link_step_data_all;
98-
std::vector<std::vector<float>> week_data_all, minute_data_all;
99-
std::vector<size_t> lod1, lod2, lod3;
100-
std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
101-
rnn_minute_datas;
102-
size_t batch_iter{0};
103-
size_t batch_size{1};
104-
DataRecord() = default;
105-
explicit DataRecord(const std::string &path, int batch_size = 1)
106-
: batch_size(batch_size) {
107-
Load(path);
108-
}
109-
DataRecord NextBatch() {
110-
DataRecord data;
111-
size_t batch_end = batch_iter + batch_size;
112-
// NOTE skip the final batch, if no enough data is provided.
113-
if (batch_end <= link_step_data_all.size()) {
114-
data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
115-
link_step_data_all.begin() + batch_end);
116-
data.week_data_all.assign(week_data_all.begin() + batch_iter,
117-
week_data_all.begin() + batch_end);
118-
data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
119-
minute_data_all.begin() + batch_end);
120-
// Prepare LoDs
121-
data.lod1.push_back(0);
122-
data.lod2.push_back(0);
123-
data.lod3.push_back(0);
124-
CHECK(!data.link_step_data_all.empty()) << "empty";
125-
CHECK(!data.week_data_all.empty());
126-
CHECK(!data.minute_data_all.empty());
127-
CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
128-
CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
129-
for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
130-
for (const auto &d : data.link_step_data_all[j]) {
131-
data.rnn_link_data.push_back(d);
132-
}
133-
data.rnn_week_datas.push_back(data.week_data_all[j]);
134-
data.rnn_minute_datas.push_back(data.minute_data_all[j]);
135-
// calculate lod
136-
data.lod1.push_back(data.lod1.back() +
137-
data.link_step_data_all[j].size());
138-
data.lod3.push_back(data.lod3.back() + 1);
139-
for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
140-
data.lod2.push_back(data.lod2.back() +
141-
data.link_step_data_all[j].size());
142-
}
143-
}
144-
}
145-
batch_iter += batch_size;
146-
return data;
147-
}
148-
void Load(const std::string &path) {
149-
std::ifstream file(path);
150-
std::string line;
151-
int num_lines = 0;
152-
while (std::getline(file, line)) {
153-
num_lines++;
154-
std::vector<std::string> data;
155-
split(line, ':', &data);
156-
std::vector<std::vector<float>> link_step_data;
157-
std::vector<std::string> link_datas;
158-
split(data[0], '|', &link_datas);
159-
for (auto &step_data : link_datas) {
160-
std::vector<float> tmp;
161-
split_to_float(step_data, ',', &tmp);
162-
link_step_data.push_back(tmp);
163-
}
164-
// load week data
165-
std::vector<float> week_data;
166-
split_to_float(data[2], ',', &week_data);
167-
// load minute data
168-
std::vector<float> minute_data;
169-
split_to_float(data[1], ',', &minute_data);
170-
link_step_data_all.push_back(std::move(link_step_data));
171-
week_data_all.push_back(std::move(week_data));
172-
minute_data_all.push_back(std::move(minute_data));
173-
}
174-
}
175-
};
176-
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
177-
int batch_size) {
178-
PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
179-
week_tensor, minute_tensor;
180-
lod_attention_tensor.name = "data_lod_attention";
181-
init_zero_tensor.name = "cell_init";
182-
lod_tensor_tensor.name = "data";
183-
week_tensor.name = "week";
184-
minute_tensor.name = "minute";
185-
auto one_batch = data->NextBatch();
186-
std::vector<int> rnn_link_data_shape(
187-
{static_cast<int>(one_batch.rnn_link_data.size()),
188-
static_cast<int>(one_batch.rnn_link_data.front().size())});
189-
lod_attention_tensor.shape.assign({1, 2});
190-
lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
191-
init_zero_tensor.shape.assign({batch_size, 15});
192-
init_zero_tensor.lod.assign({one_batch.lod3});
193-
lod_tensor_tensor.shape = rnn_link_data_shape;
194-
lod_tensor_tensor.lod.assign({one_batch.lod1});
195-
// clang-format off
196-
week_tensor.shape.assign(
197-
{static_cast<int>(one_batch.rnn_week_datas.size()),
198-
static_cast<int>(one_batch.rnn_week_datas.front().size())});
199-
week_tensor.lod.assign({one_batch.lod3});
200-
minute_tensor.shape.assign(
201-
{static_cast<int>(one_batch.rnn_minute_datas.size()),
202-
static_cast<int>(one_batch.rnn_minute_datas.front().size())});
203-
minute_tensor.lod.assign({one_batch.lod3});
204-
// clang-format on
205-
// assign data
206-
TensorAssignData<float>(&lod_attention_tensor,
207-
std::vector<std::vector<float>>({{0, 0}}));
208-
std::vector<float> tmp_zeros(batch_size * 15, 0.);
209-
TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
210-
TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
211-
TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
212-
TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
213-
// Set inputs.
214-
auto init_zero_tensor1 = init_zero_tensor;
215-
init_zero_tensor1.name = "hidden_init";
216-
input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
217-
init_zero_tensor1, lod_attention_tensor,
218-
lod_tensor_tensor});
219-
for (auto &tensor : *input_slots) {
220-
tensor.dtype = PaddleDType::FLOAT32;
221-
}
222-
}
223-
224-
} // namespace
225-
226-
void CompareResult(const std::vector<PaddleTensor> &outputs,
227-
const std::vector<PaddleTensor> &base_outputs) {
228-
PADDLE_ENFORCE_GT(outputs.size(), 0);
229-
PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
230-
for (size_t i = 0; i < outputs.size(); i++) {
231-
auto &out = outputs[i];
232-
auto &base_out = base_outputs[i];
233-
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
234-
[](int a, int b) { return a * b; });
235-
size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(),
236-
1, [](int a, int b) { return a * b; });
237-
PADDLE_ENFORCE_EQ(size, size1);
238-
PADDLE_ENFORCE_GT(size, 0);
239-
float *data = static_cast<float *>(out.data.data());
240-
float *base_data = static_cast<float *>(base_out.data.data());
241-
for (size_t i = 0; i < size; i++) {
242-
EXPECT_NEAR(data[i], base_data[i], 1e-3);
243-
}
244-
}
245-
}
246-
// Test with a really complicate model.
247-
void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) {
248-
AnalysisConfig config;
249-
config.prog_file = FLAGS_infer_model + "/__model__";
250-
config.param_file = FLAGS_infer_model + "/param";
251-
config.use_gpu = false;
252-
config.device = 0;
253-
config.specify_input_name = true;
254-
config.enable_ir_optim = activate_ir;
255-
PADDLE_ENFORCE(config.ir_mode ==
256-
AnalysisConfig::IrPassMode::kExclude); // default
257-
config.ir_passes.clear(); // Do not exclude any pass.
258-
259-
int batch_size = FLAGS_batch_size;
260-
int num_times = FLAGS_repeat;
261-
262-
auto base_predictor =
263-
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
264-
auto predictor =
265-
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
266-
config);
267-
std::vector<PaddleTensor> input_slots;
268-
DataRecord data(FLAGS_infer_data, batch_size);
269-
// Prepare inputs.
270-
PrepareInputs(&input_slots, &data, batch_size);
271-
std::vector<PaddleTensor> outputs, base_outputs;
272-
273-
base_predictor->Run(input_slots, &base_outputs);
274-
275-
if (num_threads == 1) {
276-
// Prepare inputs.
277-
Timer timer;
278-
timer.tic();
279-
for (int i = 0; i < num_times; i++) {
280-
predictor->Run(input_slots, &outputs);
281-
}
282-
PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times);
283-
CompareResult(outputs, base_outputs);
284-
} else {
285-
std::vector<std::thread> threads;
286-
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
287-
// TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled
288-
// because AttentionLSTM's hard code nodeid will be damanged.
289-
for (int tid = 0; tid < num_threads; ++tid) {
290-
predictors.emplace_back(
291-
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
292-
config));
293-
}
294-
for (int tid = 0; tid < num_threads; ++tid) {
295-
threads.emplace_back([&, tid]() {
296-
// Each thread should have local input_slots and outputs.
297-
std::vector<PaddleTensor> input_slots;
298-
DataRecord data(FLAGS_infer_data, batch_size);
299-
PrepareInputs(&input_slots, &data, batch_size);
300-
std::vector<PaddleTensor> outputs;
301-
Timer timer;
302-
timer.tic();
303-
for (int i = 0; i < num_times; i++) {
304-
predictors[tid]->Run(input_slots, &outputs);
305-
}
306-
PrintTime(batch_size, num_times, num_threads, tid,
307-
timer.toc() / num_times);
308-
CompareResult(outputs, base_outputs);
309-
});
310-
}
311-
for (int i = 0; i < num_threads; ++i) {
312-
threads[i].join();
313-
}
314-
}
315-
316-
if (use_analysis && activate_ir) {
317-
AnalysisPredictor *analysis_predictor =
318-
dynamic_cast<AnalysisPredictor *>(predictor.get());
319-
auto &fuse_statis = analysis_predictor->analysis_argument()
320-
.Get<std::unordered_map<std::string, int>>(
321-
framework::ir::kFuseStatisAttr);
322-
for (auto &item : fuse_statis) {
323-
LOG(INFO) << "fused " << item.first << " " << item.second;
324-
}
325-
326-
int num_ops = 0;
327-
for (auto &node :
328-
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
329-
if (node->IsFunction()) {
330-
++num_ops;
331-
}
332-
}
333-
LOG(INFO) << "has num ops: " << num_ops;
334-
335-
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
336-
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
337-
EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM
338-
EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
339-
EXPECT_EQ(num_ops,
340-
13); // After graph optimization, only 13 operators exists.
341-
}
342-
}
343-
344-
// Inference with analysis and IR, easy for profiling independently.
345-
TEST(Analyzer, rnn1) { TestRNN1Prediction(true, true, FLAGS_num_threads); }
346-
347-
// Other unit-tests of RNN1, test different options of use_analysis,
348-
// activate_ir and multi-threads.
349-
TEST(Analyzer, RNN_tests) {
350-
int num_threads[2] = {1, 4};
351-
for (auto i : num_threads) {
352-
// Directly infer with the original model.
353-
TestRNN1Prediction(false, false, i);
354-
// Inference with the original model with the analysis turned on, the
355-
// analysis
356-
// module will transform the program to a data flow graph.
357-
TestRNN1Prediction(true, false, i);
358-
// Inference with analysis and IR. The IR module will fuse some large
359-
// kernels.
360-
TestRNN1Prediction(true, true, i);
361-
}
82+
TEST(Analyzer, word2vec_without_analysis) {
83+
TestWord2vecPrediction(FLAGS_inference_model_dir);
36284
}
36385

36486
} // namespace analysis

0 commit comments

Comments
 (0)