@@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred,
147
147
148
148
helper = LayerHelper ('rpn_target_assign' , ** locals ())
149
149
# Assign target label to anchors
150
- loc_index = helper .create_tmp_variable (dtype = 'int32' )
151
- score_index = helper .create_tmp_variable (dtype = 'int32' )
152
- target_label = helper .create_tmp_variable (dtype = 'int32' )
153
- target_bbox = helper .create_tmp_variable (dtype = anchor_box .dtype )
150
+ loc_index = helper .create_variable_for_type_inference (dtype = 'int32' )
151
+ score_index = helper .create_variable_for_type_inference (dtype = 'int32' )
152
+ target_label = helper .create_variable_for_type_inference (dtype = 'int32' )
153
+ target_bbox = helper .create_variable_for_type_inference (
154
+ dtype = anchor_box .dtype )
154
155
helper .append_op (
155
156
type = "rpn_target_assign" ,
156
157
inputs = {
@@ -282,7 +283,8 @@ class number, M is number of bounding boxes. For each category
282
283
scores = nn .reshape (x = scores , shape = compile_shape , actual_shape = run_shape )
283
284
scores = nn .transpose (scores , perm = [0 , 2 , 1 ])
284
285
scores .stop_gradient = True
285
- nmsed_outs = helper .create_tmp_variable (dtype = decoded_box .dtype )
286
+ nmsed_outs = helper .create_variable_for_type_inference (
287
+ dtype = decoded_box .dtype )
286
288
helper .append_op (
287
289
type = "multiclass_nms" ,
288
290
inputs = {'Scores' : scores ,
@@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None):
314
316
"""
315
317
helper = LayerHelper ("iou_similarity" , ** locals ())
316
318
if name is None :
317
- out = helper .create_tmp_variable (dtype = x .dtype )
319
+ out = helper .create_variable_for_type_inference (dtype = x .dtype )
318
320
else :
319
321
out = helper .create_variable (
320
322
name = name , dtype = x .dtype , persistable = False )
@@ -351,7 +353,8 @@ def box_coder(prior_box,
351
353
helper = LayerHelper ("box_coder" , ** locals ())
352
354
353
355
if name is None :
354
- output_box = helper .create_tmp_variable (dtype = prior_box .dtype )
356
+ output_box = helper .create_variable_for_type_inference (
357
+ dtype = prior_box .dtype )
355
358
else :
356
359
output_box = helper .create_variable (
357
360
name = name , dtype = prior_box .dtype , persistable = False )
@@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None):
382
385
"""
383
386
helper = LayerHelper ("polygon_box_transform" , ** locals ())
384
387
if name is None :
385
- output = helper .create_tmp_variable (dtype = input .dtype )
388
+ output = helper .create_variable_for_type_inference (dtype = input .dtype )
386
389
else :
387
390
output = helper .create_variable (
388
391
name = name , dtype = prior_box .input , persistable = False )
@@ -450,7 +453,7 @@ def detection_map(detect_res,
450
453
helper = LayerHelper ("detection_map" , ** locals ())
451
454
452
455
def __create_var (type ):
453
- return helper .create_tmp_variable (dtype = type )
456
+ return helper .create_variable_for_type_inference (dtype = type )
454
457
455
458
map_out = __create_var ('float32' )
456
459
accum_pos_count_out = out_states [0 ] if out_states else __create_var ('int32' )
@@ -557,8 +560,9 @@ def bipartite_match(dist_matrix,
557
560
>>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
558
561
"""
559
562
helper = LayerHelper ('bipartite_match' , ** locals ())
560
- match_indices = helper .create_tmp_variable (dtype = 'int32' )
561
- match_distance = helper .create_tmp_variable (dtype = dist_matrix .dtype )
563
+ match_indices = helper .create_variable_for_type_inference (dtype = 'int32' )
564
+ match_distance = helper .create_variable_for_type_inference (
565
+ dtype = dist_matrix .dtype )
562
566
helper .append_op (
563
567
type = 'bipartite_match' ,
564
568
inputs = {'DistMat' : dist_matrix },
@@ -644,8 +648,8 @@ def target_assign(input,
644
648
gt, matched_indices, mismatch_value=0)
645
649
"""
646
650
helper = LayerHelper ('target_assign' , ** locals ())
647
- out = helper .create_tmp_variable (dtype = input .dtype )
648
- out_weight = helper .create_tmp_variable (dtype = 'float32' )
651
+ out = helper .create_variable_for_type_inference (dtype = input .dtype )
652
+ out_weight = helper .create_variable_for_type_inference (dtype = 'float32' )
649
653
helper .append_op (
650
654
type = 'target_assign' ,
651
655
inputs = {
@@ -816,9 +820,10 @@ def __reshape_to_2d(var):
816
820
conf_loss = nn .reshape (
817
821
x = conf_loss , shape = (num , num_prior ), actual_shape = actual_shape )
818
822
conf_loss .stop_gradient = True
819
- neg_indices = helper .create_tmp_variable (dtype = 'int32' )
823
+ neg_indices = helper .create_variable_for_type_inference (dtype = 'int32' )
820
824
dtype = matched_indices .dtype
821
- updated_matched_indices = helper .create_tmp_variable (dtype = dtype )
825
+ updated_matched_indices = helper .create_variable_for_type_inference (
826
+ dtype = dtype )
822
827
helper .append_op (
823
828
type = 'mine_hard_examples' ,
824
829
inputs = {
@@ -998,8 +1003,8 @@ def _is_list_or_tuple_(data):
998
1003
max_sizes = [max_sizes ]
999
1004
attrs ['max_sizes' ] = max_sizes
1000
1005
1001
- box = helper .create_tmp_variable (dtype )
1002
- var = helper .create_tmp_variable (dtype )
1006
+ box = helper .create_variable_for_type_inference (dtype )
1007
+ var = helper .create_variable_for_type_inference (dtype )
1003
1008
helper .append_op (
1004
1009
type = "prior_box" ,
1005
1010
inputs = {"Input" : input ,
@@ -1337,8 +1342,8 @@ def _is_list_or_tuple_(data):
1337
1342
'offset' : offset
1338
1343
}
1339
1344
1340
- anchor = helper .create_tmp_variable (dtype )
1341
- var = helper .create_tmp_variable (dtype )
1345
+ anchor = helper .create_variable_for_type_inference (dtype )
1346
+ var = helper .create_variable_for_type_inference (dtype )
1342
1347
helper .append_op (
1343
1348
type = "anchor_generator" ,
1344
1349
inputs = {"Input" : input },
@@ -1384,7 +1389,7 @@ def roi_perspective_transform(input,
1384
1389
"""
1385
1390
helper = LayerHelper ('roi_perspective_transform' , ** locals ())
1386
1391
dtype = helper .input_dtype ()
1387
- out = helper .create_tmp_variable (dtype )
1392
+ out = helper .create_variable_for_type_inference (dtype )
1388
1393
helper .append_op (
1389
1394
type = "roi_perspective_transform" ,
1390
1395
inputs = {"X" : input ,
@@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois,
1418
1423
1419
1424
helper = LayerHelper ('generate_proposal_labels' , ** locals ())
1420
1425
1421
- rois = helper .create_tmp_variable (dtype = rpn_rois .dtype )
1422
- labels_int32 = helper .create_tmp_variable (dtype = gt_classes .dtype )
1423
- bbox_targets = helper .create_tmp_variable (dtype = rpn_rois .dtype )
1424
- bbox_inside_weights = helper .create_tmp_variable (dtype = rpn_rois .dtype )
1425
- bbox_outside_weights = helper .create_tmp_variable (dtype = rpn_rois .dtype )
1426
+ rois = helper .create_variable_for_type_inference (dtype = rpn_rois .dtype )
1427
+ labels_int32 = helper .create_variable_for_type_inference (
1428
+ dtype = gt_classes .dtype )
1429
+ bbox_targets = helper .create_variable_for_type_inference (
1430
+ dtype = rpn_rois .dtype )
1431
+ bbox_inside_weights = helper .create_variable_for_type_inference (
1432
+ dtype = rpn_rois .dtype )
1433
+ bbox_outside_weights = helper .create_variable_for_type_inference (
1434
+ dtype = rpn_rois .dtype )
1426
1435
1427
1436
helper .append_op (
1428
1437
type = "generate_proposal_labels" ,
@@ -1504,8 +1513,10 @@ def generate_proposals(scores,
1504
1513
"""
1505
1514
helper = LayerHelper ('generate_proposals' , ** locals ())
1506
1515
1507
- rpn_rois = helper .create_tmp_variable (dtype = bbox_deltas .dtype )
1508
- rpn_roi_probs = helper .create_tmp_variable (dtype = scores .dtype )
1516
+ rpn_rois = helper .create_variable_for_type_inference (
1517
+ dtype = bbox_deltas .dtype )
1518
+ rpn_roi_probs = helper .create_variable_for_type_inference (
1519
+ dtype = scores .dtype )
1509
1520
helper .append_op (
1510
1521
type = "generate_proposals" ,
1511
1522
inputs = {
0 commit comments