@@ -4920,16 +4920,16 @@ def random_crop(x, shape, seed=None):
4920
4920
return out
4921
4921
4922
4922
4923
- def log (input ):
4923
+ def log (x ):
4924
4924
"""
4925
4925
Calculates the natural log of the given input tensor, element-wise.
4926
4926
4927
4927
.. math::
4928
4928
4929
- Out = \\ ln(input )
4929
+ Out = \\ ln(x )
4930
4930
4931
4931
Args:
4932
- input (Variable): Input tensor.
4932
+ x (Variable): Input tensor.
4933
4933
4934
4934
Returns:
4935
4935
Variable: The natural log of the input tensor computed element-wise.
@@ -4938,7 +4938,7 @@ def log(input):
4938
4938
4939
4939
.. code-block:: python
4940
4940
4941
- output = fluid.layers.log(input )
4941
+ output = fluid.layers.log(x )
4942
4942
"""
4943
4943
helper = LayerHelper ('log' , ** locals ())
4944
4944
dtype = helper .input_dtype (input_param_name = 'x' )
@@ -4947,18 +4947,18 @@ def log(input):
4947
4947
return out
4948
4948
4949
4949
4950
- def relu (input ):
4950
+ def relu (x ):
4951
4951
"""
4952
4952
Relu takes one input data (Tensor) and produces one output data (Tensor)
4953
- where the rectified linear function, y = max(0, input ), is applied to
4953
+ where the rectified linear function, y = max(0, x ), is applied to
4954
4954
the tensor elementwise.
4955
4955
4956
4956
.. math::
4957
4957
4958
- Out = \\ max(0, input )
4958
+ Out = \\ max(0, x )
4959
4959
4960
4960
Args:
4961
- input (Variable): The input tensor.
4961
+ x (Variable): The input tensor.
4962
4962
4963
4963
Returns:
4964
4964
Variable: The output tensor with the same shape as input.
@@ -4967,7 +4967,7 @@ def relu(input):
4967
4967
4968
4968
.. code-block:: python
4969
4969
4970
- output = fluid.layers.relu(input )
4970
+ output = fluid.layers.relu(x )
4971
4971
"""
4972
4972
helper = LayerHelper ('relu' , ** locals ())
4973
4973
dtype = helper .input_dtype (input_param_name = 'x' )
0 commit comments