|
| 1 | +# Copyright (c) 2016 Baidu, Inc. All Rights Reserved |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import paddle.trainer.PyDataProvider2 as dp2 |
| 16 | +import collections |
| 17 | +import swig_paddle |
| 18 | + |
| 19 | +__all__ = ['DataProviderConverter'] |
| 20 | + |
| 21 | + |
| 22 | +class IScanner(object): |
| 23 | + def __init__(self, input_type, pos): |
| 24 | + self.input_type = input_type |
| 25 | + assert isinstance(self.input_type, dp2.InputType) |
| 26 | + self.pos = pos |
| 27 | + |
| 28 | + def scan(self, dat): |
| 29 | + pass |
| 30 | + |
| 31 | + def finish_scan(self, argument): |
| 32 | + pass |
| 33 | + |
| 34 | + |
| 35 | +class DenseScanner(IScanner): |
| 36 | + def __init__(self, input_type, pos): |
| 37 | + IScanner.__init__(self, input_type, pos) |
| 38 | + self.__mat__ = [] |
| 39 | + self.__height__ = 0 |
| 40 | + |
| 41 | + def scan(self, dat): |
| 42 | + self.__mat__.extend(dat) |
| 43 | + self.__height__ += 1 |
| 44 | + |
| 45 | + def finish_scan(self, argument): |
| 46 | + assert isinstance(argument, swig_paddle.Arguments) |
| 47 | + assert isinstance(self.input_type, dp2.InputType) |
| 48 | + m = swig_paddle.Matrix.createDense(self.__mat__, |
| 49 | + self.__height__, |
| 50 | + self.input_type.dim, |
| 51 | + False) |
| 52 | + argument.setSlotValue(self.pos, m) |
| 53 | + |
| 54 | + |
| 55 | +class SparseBinaryScanner(IScanner): |
| 56 | + def __init__(self, input_type, pos): |
| 57 | + IScanner.__init__(self, input_type, pos) |
| 58 | + self.__rows__ = [0] |
| 59 | + self.__cols__ = [] |
| 60 | + self.__height__ = 0 |
| 61 | + self.__nnz__ = 0 |
| 62 | + self.__value__ = [] |
| 63 | + |
| 64 | + def scan(self, dat): |
| 65 | + self.extend_cols(dat) |
| 66 | + self.__rows__.append(len(dat)) |
| 67 | + |
| 68 | + def extend_cols(self, dat): |
| 69 | + self.__cols__.extend(dat) |
| 70 | + |
| 71 | + def finish_scan(self, argument): |
| 72 | + assert isinstance(argument, swig_paddle.Arguments) |
| 73 | + assert isinstance(self.input_type, dp2.InputType) |
| 74 | + m = swig_paddle.Matrix.createSparse(self.__height__, |
| 75 | + self.input_type.dim, |
| 76 | + len(self.__cols__), |
| 77 | + len(self.__value__) == 0) |
| 78 | + assert isinstance(m, swig_paddle.Matrix) |
| 79 | + m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__) |
| 80 | + argument.setSlotValue(self.pos, m) |
| 81 | + |
| 82 | + |
| 83 | +class SparseFloatScanner(SparseBinaryScanner): |
| 84 | + def __init__(self, input_type, pos): |
| 85 | + SparseBinaryScanner.__init__(self, input_type, pos) |
| 86 | + |
| 87 | + def extend_cols(self, dat): |
| 88 | + self.__cols__.extend((x[0] for x in dat)) |
| 89 | + self.__value__.extend((x[1] for x in dat)) |
| 90 | + |
| 91 | + |
| 92 | +class IndexScanner(IScanner): |
| 93 | + def __init__(self, input_type, pos): |
| 94 | + IScanner.__init__(self, input_type, pos) |
| 95 | + self.__ids__ = [] |
| 96 | + |
| 97 | + def scan(self, dat): |
| 98 | + self.__ids__.append(dat) |
| 99 | + |
| 100 | + def finish_scan(self, argument): |
| 101 | + ids = swig_paddle.IVector.create(self.__ids__) |
| 102 | + assert isinstance(argument, swig_paddle.Arguments) |
| 103 | + argument.setSlotIds(self.pos, ids) |
| 104 | + |
| 105 | + |
| 106 | +class SequenceScanner(IScanner): |
| 107 | + def __init__(self, input_type, pos, inner_scanner, setter): |
| 108 | + IScanner.__init__(self, input_type, pos) |
| 109 | + self.__seq__ = [0] |
| 110 | + self.__inner_scanner__ = inner_scanner |
| 111 | + self.__setter__ = setter |
| 112 | + |
| 113 | + def scan(self, dat): |
| 114 | + self.__seq__.append(self.__seq__[-1] + self.get_size(dat)) |
| 115 | + for each in dat: |
| 116 | + self.__inner_scanner__.scan(each) |
| 117 | + |
| 118 | + def finish_scan(self, argument): |
| 119 | + seq = swig_paddle.IVector.create(self.__seq__, False) |
| 120 | + self.__setter__(argument, self.pos, seq) |
| 121 | + self.__inner_scanner__.finish_scan(argument) |
| 122 | + |
| 123 | + def get_size(self, dat): |
| 124 | + if isinstance(self.__inner_scanner__, SequenceScanner): |
| 125 | + return sum(self.__inner_scanner__.get_size(item) for item in dat) |
| 126 | + else: |
| 127 | + return len(dat) |
| 128 | + |
| 129 | + |
| 130 | +class DataProviderConverter(object): |
| 131 | + def __init__(self, input_types): |
| 132 | + self.input_types = input_types |
| 133 | + assert isinstance(self.input_types, collections.Sequence) |
| 134 | + for each in self.input_types: |
| 135 | + assert isinstance(each, dp2.InputType) |
| 136 | + |
| 137 | + def convert(self, dat, argument=None): |
| 138 | + if argument is None: |
| 139 | + argument = swig_paddle.Arguments.createArguments(0) |
| 140 | + assert isinstance(argument, swig_paddle.Arguments) |
| 141 | + argument.resize(len(self.input_types)) |
| 142 | + |
| 143 | + scanners = [DataProviderConverter.create_scanner(i, each_type) |
| 144 | + for i, each_type in enumerate(self.input_types)] |
| 145 | + |
| 146 | + for each_sample in dat: |
| 147 | + for each_step, scanner in zip(each_sample, scanners): |
| 148 | + scanner.scan(each_step) |
| 149 | + |
| 150 | + for scanner in scanners: |
| 151 | + scanner.finish_scan(argument) |
| 152 | + |
| 153 | + return argument |
| 154 | + |
| 155 | + def __call__(self, dat, argument=None): |
| 156 | + return self.convert(dat, argument) |
| 157 | + |
| 158 | + @staticmethod |
| 159 | + def create_scanner(i, each): |
| 160 | + assert isinstance(each, dp2.InputType) |
| 161 | + retv = None |
| 162 | + if each.type == dp2.DataType.Dense: |
| 163 | + retv = DenseScanner(each, i) |
| 164 | + elif each.type == dp2.DataType.Index: |
| 165 | + retv = IndexScanner(each, i) |
| 166 | + elif each.type == dp2.DataType.SparseNonValue: |
| 167 | + retv = SparseBinaryScanner(each, i) |
| 168 | + elif each.type == dp2.DataType.SparseValue: |
| 169 | + retv = SparseFloatScanner(each, i) |
| 170 | + assert retv is not None |
| 171 | + |
| 172 | + if each.seq_type == dp2.SequenceType.SUB_SEQUENCE: |
| 173 | + retv = SequenceScanner(each, i, retv, lambda a, p, seq: |
| 174 | + a.setSlotSubSequenceStartPositions(p, seq)) |
| 175 | + |
| 176 | + if each.seq_type in [dp2.SequenceType.SUB_SEQUENCE, |
| 177 | + dp2.SequenceType.SEQUENCE]: |
| 178 | + retv = SequenceScanner(each, i, retv, lambda a, p, seq: |
| 179 | + a.setSlotSequenceStartPositions(p, seq)) |
| 180 | + return retv |
0 commit comments